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Abstract

The statistics of Poincaré recurrences for generic Hamiltonian systems exhibits a

power-law decay. This is caused by trapping of chaotic orbits close to regular tori. The

mechanism of the trapping is well understood for systems with one degree of freedom,

but is an open question in higher dimensional systems. In this thesis the global structure

of the regular tori in such systems is revealed. Chaotic orbits are found to be trapped in

a sticky region at the outer border of these structures. Investigations of the dynamics

within the sticky region lead to the conjecture that the sticky region results from a

combination of overlapping resonance zones.

Zusammenfassung

Die Statistik der Poincaré-Rückkehrzeiten in generischen Hamilton'schen Systemen

zeigt einen algebraischen Abfall, welcher durch das Hängenbleiben von chaotischen Or-

bits in der Nähe von regulären Tori verursacht wird. Der zugrundeliegende Mechanis-

mus ist gut verstanden für Systeme mit einem Freiheitsgrad, während dies eine o�ene

Frage in höher dimensionalen Systemen darstellt. In der vorliegenden Arbeit wird die

globale Struktur der regulären Tori in diesen Systemen aufgedeckt. Es wird weiterhin

festgestellt, dass chaotische Orbits in einer Region hängenbleiben, welche sich an der

Auÿenseite der regulären Strukturen be�ndet. Untersuchungen zur Dynamik innerhalb

dieser Region führen zu der Vermutung, dass diese Region aus einer Kombination von

überlappenden Resonanzzonen hervorgeht.





Contents

1 Introduction 1

2 Power-law trapping in 2D and 4D 5

2.1 Hamiltonian dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Poincaré recurrences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 KAM theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Trapping in 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.1 Resonant tori - Poincaré-Birkho� theorem . . . . . . . . . . . . . 10

2.4.2 Trapping mechanism . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Transition to higher dimensions . . . . . . . . . . . . . . . . . . . . . . . 11

2.5.1 Resonant tori - structures in phase space . . . . . . . . . . . . . 12

2.5.2 Center manifold and NHIM . . . . . . . . . . . . . . . . . . . . . 13

2.5.3 Arnold web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Trapping in 4D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6.1 Generalized partial barriers (NHIM) . . . . . . . . . . . . . . . . 15

2.6.2 Frequency analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Example system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7.1 Standard Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7.2 Coupled Standard Map . . . . . . . . . . . . . . . . . . . . . . . 19

3 Representations of the 4D phase space 23

3.1 Visualization methods of the 4D phase space . . . . . . . . . . . . . . . 23

3.1.1 2D Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.2 Method of color and rotation . . . . . . . . . . . . . . . . . . . . 24

3.1.3 Method of phase-space sections . . . . . . . . . . . . . . . . . . . 25

3.2 Frequency space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Analysis of fundamental frequencies . . . . . . . . . . . . . . . . 27

3.2.2 Problems of Laskar's method . . . . . . . . . . . . . . . . . . . . 29

3.2.3 Numerical implementation . . . . . . . . . . . . . . . . . . . . . 33

3.3 Example: regular tori in phase and frequency space . . . . . . . . . . . . 33



vi Contents

4 Global structure of regular tori in 4D phase space 45

4.1 Concept of central 1D tori . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Finding central 1D tori . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Inverse action�angle mapping . . . . . . . . . . . . . . . . . . . . 47

4.2.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.3 Discussion of pitfalls . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Center manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Trapping in generic 4D maps 57

5.1 Poincaré recurrence statistics . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Observations of trapping in phase space . . . . . . . . . . . . . . . . . . 60

5.2.1 Gallery of trapped orbits . . . . . . . . . . . . . . . . . . . . . . 60

5.2.2 Close up on gallery . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3 Sticky region in frequency space . . . . . . . . . . . . . . . . . . . . . . 66

5.3.1 Trapped orbit in frequency space . . . . . . . . . . . . . . . . . . 66

5.3.2 Initial points in sticky region . . . . . . . . . . . . . . . . . . . . 68

5.4 Investigation of trapping in frequency space . . . . . . . . . . . . . . . . 71

5.4.1 Gaussian ensembles in sticky region . . . . . . . . . . . . . . . . 72

5.4.2 Survival time statistics . . . . . . . . . . . . . . . . . . . . . . . 75

5.4.3 Variances and means . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4.4 Details on transport in the sticky region . . . . . . . . . . . . . . 79

6 Summary and outlook 87

A Appendix 89

A.1 Analysis of fractal dimensions . . . . . . . . . . . . . . . . . . . . . . . . 89

A.2 Results for weakly coupled standard map 𝐹WC . . . . . . . . . . . . . . 94

List of Figures 99

Bibliography 101



1 Introduction

The dynamics of many classical systems can be expressed in terms of momentum and

position coordinates in phase space. In Hamiltonian systems the initial momentum

and position coordinates uniquely determine the subsequent coordinates at all times.

Despite this fact, there are systems whose dynamics are hard to predict since they

depend sensitively on the initial conditions. An example for such a system is the weather,

which may change drastically just due to the �ap of a butter�y [1]. This behavior is

referred to as chaos. The counterpart of chaos is regular motion for which the dynamics

of similar initial conditions separate only moderately with increasing time. Chaotic

dynamics occur in various �elds such as plasma physics, atomic physics, astronomy,

and chemistry, see, e.g., reference [2].

A major interest lies in understanding the transport properties of these systems [3�

5]. One aspect of transport in closed Hamiltonian systems results from the Poincaré

recurrence theorem. Poincaré proved that almost all orbits started in a phase-space

region return to that region at some point in time 𝑡 [6]. The statistics 𝑃 (𝑡) of Poincaré

recurrences 𝑡 depends on the type of dynamics. For a fully chaotic system the probability

that an orbit returns to the initial area is analogous to a coin toss. That is, with

probability 𝑝 the orbit returns within in the next time step and with probability 1−𝑝 it

does not. In this case, the statistics of Poincaré recurrences 𝑃 (𝑡) decays exponentially [7]

𝑃 (𝑡) = (1 − 𝑝)𝑡 ∼ e− ln 1
1−𝑝

𝑡 .

However, generic Hamiltonian systems are not fully chaotic but rather mixed. Their

phase space contains both chaotic and regular regions. For such a mixed phase space

the statistics of Poincaré recurrences exhibit a power-law decay [8],

𝑃 (𝑡) ∼ 𝑡−𝛾 .

Thus, 𝑃 (𝑡) decreases more slowly for a generic system than for a fully chaotic system.

The reason for this behavior are chaotic orbits of the mixed system, which are trapped

for long times in the vicinity of regular regions and hence have large recurrence times.

This trapping is well understood for systems with one degree of freedom [9]. In the
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2D phase space of such systems the regular orbits are located on invariant lines, which

form islands surrounded by a chaotic sea. Partial barriers of codimension one exist close

to the boundary of the regular islands, which allow for a limited exchange of chaotic

phase-space volumes across them. This partial transport barrier causes the trapping of

chaotic orbits close to the regular islands. However, this trapping mechanism cannot

be generalized to systems with more than one degree of freedom. This is because the

manifolds acting as partial barriers in the 2D phase space have codimension greater

than one in higher dimensional phase spaces and are therefore no barriers to transport.

The majority of physically relevant systems have more than one degree of freedom

and much less is known about these higher dimensional systems. E.g., only a few

concepts exist for describing the structure of the regular tori in these systems [10, 11].

The investigation of higher dimensional systems is challenging because a phase space

with more than three dimensions is beyond human perception. Thus, the dynamics of

these systems is often studied in the lower dimensional frequency space, where chaotic

orbits propagate along the Arnold web. This propagation is a combined e�ect of Arnold

di�usion [12], denoting the transport along resonances, and transport perpendicular to

resonances due to the overlap of resonance zones [13,14]. While the latter is also present

in 2D systems, the Arnold di�usion is unique to higher dimensional systems. In this

context di�erent types of trapping for higher dimensional systems are conjectured: First

chaotic orbits are trapped at resonance junctions due to generalized partial barriers

surrounding the resonance zones [2]. A possible nature of such barriers is described by

Wiggins [15]. Secondly, lines in frequency space with pairwise noble frequency ratio

inhibit the propagation along the Arnold web [2, 16]. A further possibility is that, the

trapping is caused by the complement of the Arnold web which consists of the most

robust tori [2, 17]. Although numerical examples for all of these types of trapping have

been found, their relevance and underlying mechanisms remain unclear.

In this thesis the trapping is examined for a coupled standard map with two degrees

of freedom. The di�erent types of trapping are explained in chapter 2 along with some

basic principles of symplectic maps and trapping mechanisms. Various methods to

visualize the 4D phase space are introduced in chapter 3. In chapter 4 visualizations

of the phase space lead to an understanding of the global structure of the regular

regions. It turns out that these regions form 4D regular islands which are based on

one parameter families of regular invariant lines, such as center manifolds. In chapter 5

the trapping of chaotic orbits is investigated by examining trapped orbits �rst in phase

space and then in frequency space. A sticky region is identi�ed which is responsible for

the trapping. It is located at the outer border of the regular islands. The transport

within the sticky region is quanti�ed and discussed with respect to transport along the
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Arnold web and the proposed types of trapping. It is conjectured that an ensemble of

overlapping resonance zones is the origin of the sticky region. The thesis concludes with

a summary and outlook in chapter 6.





2 Power-law trapping in 2D and 4D

Typical Hamiltonian systems are neither fully integrable nor fully chaotic [18]. One

question which arises from this fact is how this coexistence in�uences chaotic dynam-

ics. This chapter introduces the phenomena related to the trapping of chaotic orbits in

Hamiltonian systems. First some fundamental terms such as Hamiltonian systems and

chaos are established. Then in Section 2.2 the Poincaré recurrences 𝑃 (𝑡) are de�ned,

which exhibit a power-law for mixed phase spaces. The explanation of this behavior re-

quires the discussion of the phase-space structure of Hamiltonian systems in Section 2.3.

Based on this structure the origin of the power-law is the trapping of chaotic orbits close

to regular domains. The trapping mechanism for two dimensions is presented in Sec-

tion 2.4 and compared to the situation of trapping in four dimensions in Section 2.6,

for which much less is known. This motivates further investigations of the 4D case, for

which example systems are de�ned in Section 2.7.

2.1 Hamiltonian dynamics

A Hamiltonian system 𝐻(𝑝(𝑡), 𝑞(𝑡), 𝑡) with 𝑁 degrees of freedom is a dynamical system

de�ned on the phase space (𝑝(𝑡), 𝑞(𝑡)) ∈ 𝑈 ⊆ R𝑁 × R𝑁 , where 𝑝 and 𝑞 denote the

momentum and the position vectors, and the time 𝑡 ∈ R [19]. The equations of motion

are given by

𝑝̇ = − 𝜕𝐻(𝑝, 𝑞, 𝑡)

𝜕𝑞
,

𝑞̇ =
𝜕𝐻(𝑝, 𝑞, 𝑡)

𝜕𝑝
.

(2.1)

The dynamics of the Hamiltonian system 𝐻(𝑝(𝑡), 𝑞(𝑡), 𝑡) can be reduced to a 2𝑁 -

dimensional Poincaré map 𝐹 by using a Poincaré section [19, section 1.3]. 𝐹 is a

symplectic map implying that it is an orientation and volume preserving di�eomor-
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phism on the phase space

𝐹 : 𝑈 → 𝑈 ,

(𝑝′, 𝑞′) = 𝐹 (𝑝, 𝑞) .
(2.2)

The iterations of the map 𝐹 are

𝑥(𝑡) ≡ 𝐹 𝑡(𝑥(0)) ≡ 𝐹 ⊗ . . .⊗ 𝐹⏟  ⏞  
𝑡

(𝑥0)

with the abbreviation 𝑥 ≡ (𝑝, 𝑞) and the initial vector 𝑥(0) ≡ 𝑥0. Note that also

backward iterations are possible using the inverse map 𝐹−1, i.e., 𝑡 ∈ Z. A sequence

{𝑥(𝑡)}𝑡∈N is called orbit.

Many Hamiltonian systems exhibit chaotic dynamics [19, section 1]. Chaos means

that orbits 𝑥(𝑡) of the system depend sensitively on their initial condition 𝑥(0): a small

deviation of the initial condition, △𝑥0 = 𝑥′(0) − 𝑥(0) with ||△𝑥0|| ≪ 1, leads to an

orbit 𝑥′(𝑡) exponentially diverging from the original one, ||𝑥(𝑡) − 𝑥′(𝑡)|| ∼ e𝜆𝑡. Such

an orbit 𝑥(𝑡) is called chaotic and regions containing just chaotic orbits are denoted

chaotic as well.

This thesis deals with symplectic maps 𝐹 rather than with the corresponding Hamil-

tonian systems 𝐻(𝑝(𝑡), 𝑞(𝑡), 𝑡). Therefore, the following introduction to the theory of

trapping of chaotic orbits is mostly formulated in terms of such maps. Accordingly,

invariant means always invariant with respect to a map. A nice overview of the basic

principles of Hamiltonian systems, mixed phase space, and trapping for kicked systems

with one degree of freedom is presented by Michler [20, sections 2 and 3].

2.2 Poincaré recurrences

Based on the volume preservation of the symplectic map 𝐹 , see Eq. (2.2), the Poincaré

recurrence theorem can be proved [6, 19, section 7.1.3]. It states that for a symplectic

map 𝐹 with a con�ned phase space 𝑈 every region Γ ⊆ 𝑈 is mapped almost completely

onto itself in the limits of large times. That is, ∀𝑥(0) ∈ Γ∖Γ0 : ∃ 𝑡 ∈ N : 𝑥(𝑡) ∈ Γ, where

the excluded subset Γ0 ⊆ Γ is of measure zero. The �rst time 𝑡 an orbit returns to

its initial region Γ is called Poincaré recurrence. The statistics of Poincaré recurrences

𝑃 (𝑡) gives the probability that an orbit 𝑥(𝑡), with 𝑥(0) ∈ Γ, has not returned to Γ until

time 𝑡.

The Poincaré recurrence theorem does not predict anything about the features of

𝑃 (𝑡), except that it has to be monotonically decreasing with time 𝑡. For a fully chaotic
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map 𝐹chaotic the statistics 𝑃 (𝑡) is analog to the probability of a coin toss not to end up

on "heads" within 𝑡 �ips. It reads 𝑃 (𝑡) = 1/2𝑡 and hence for such a map 𝐹chaotic the

statistics 𝑃 (𝑡) decreases exponentially like 𝑃chaotic(𝑡) ∼ e−𝛾𝑡 [21, 22]. On the contrary,

the statistics of Poincaré recurrences of a generic symplectic map 𝐹 exhibits an much

slower algebraic decay 𝑃 (𝑡) ∼ 𝑡−𝛾 [8]. The reason for this di�erent behavior is outlined

in the following sections for 2D and 4D maps.

For the well studied case of 2D symplectic generic maps the exponent 𝛾 is found to

be on average 𝛾 ≈ 1.5 [8, 23�29]. For the much less investigated higher dimensional

maps, in which the power-law decay of 𝑃 (𝑡) also occurs, the exponent is found to be

1.1 < 𝛾 < 1.5 for 4D, 1.7 < 𝛾 < 2 for 6D [30] and 1.3 < 𝛾 < 5.5 for maps with

𝑁 = 25 degrees of freedom [31]. Shepelyansky conjectures that for all generic cases the

exponent has the universal average value of 𝛾 ≈ 1.3 . . . 1.4, independent of the degrees

of freedom [32].

There exist other statistics than 𝑃 (𝑡), which are based on the Poincaré recurrence

theorem. One is the survival time 𝑆(𝑡), which denotes the probability that an orbit is

still in the initial region Γ at time 𝑡. If the initial region for the survival times 𝑆(𝑡)

is chosen to be the complement of the initial region for the Poincaré recurrences 𝑃 (𝑡)

with a power-law 𝑃 (𝑡) ∼ 𝑡−𝛾, 𝑆(𝑡) will exhibit a power-law 𝑆(𝑡) ∼ 𝑡−(𝛾−1) [7]. The

survival time 𝑆(𝑡) is for some numerical investigations a more suitable quantity than

the Poincaré recurrences 𝑃 (𝑡).

2.3 KAM theorem

Central for the understanding of the power-law behavior of 𝑃 (𝑡) is the structure of

mixed phase spaces. This structure can be explained by the help of the KAM theorem,

which is shortly introduced in this section based on references [19,33]. The introduction

of the necessary fundamental concepts of, e.g., canonical transformations is omitted for

brevity and can be found in the above references.

Consider a symplectic map 𝐹 with 𝑁 degrees of freedom, whose corresponding time-

independent Hamiltonian 𝐻(𝑝, 𝑞) is integrable, i.e., a canonical transformation ex-

ists that converts the phase space coordinates (𝑝(𝑡), 𝑞(𝑡)) to action�angle coordinates

(𝐼(𝑡),Θ(𝑡)) ∈ R𝑁 × T𝑁 . For these new coordinates the equations of motions Eq. (2.1)

change to

𝐼 = − 𝜕𝐻(𝐼)

𝜕Θ
= 0 ,

Θ̇ =
𝜕𝐻(𝐼)

𝜕𝐼
=: 𝜔(𝐼) ,

(2.3)
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with the 𝑁 -dimensional vector of the fundamental frequencies 𝜔 ∈ T𝑁 . The do-

main T ≡ [0, 2π) of each angle Θ𝑖 is periodic. Consequently, an initial point 𝑥0 =

(𝑝(𝐼0, Θ0), 𝑞(𝐼0, Θ0)) in phase space leads to an orbit

𝑥(𝑡) = (𝑝(𝐼(𝑡), Θ(𝑡)), 𝑞(𝐼(𝑡), Θ(𝑡)))

with

𝐼(𝑡) = 𝐼0 ,

Θ(𝑡) = (Θ0 + 𝜔(𝐼0)𝑡) mod 2π ,
(2.4)

where the modulus emphasizes the periodicity of T𝑁 . An orbit 𝑥(𝑡) whose dynamics can

be expressed as in Eq. (2.4) is called regular orbit. In the phase space of an integrable

Hamiltonian all orbits are regular. An orbit of such a regular phase space is located

on a 𝑁 -dimensional invariant manifold representing a torus. A torus is characterized

by its fundamental frequencies 𝜔(𝐼0) and can be parametrized by the angles Θ ∈ T𝑁

and possesses the tangential vectors {𝑒Θ𝑖
(Θ0, 𝐼0)}𝑖=1...𝑁 at angles Θ0. The dual vec-

tors {𝑒𝐼𝑖(Θ0, 𝐼0)}𝑖=1...𝑁 are the directions in which the actions 𝐼 change, thus pointing

towards other tori.

Generic Hamiltonian systems 𝐻 are neither integrable nor fully chaotic [18]. They

are considered to be a sum

𝐻 = 𝐻0 + 𝐾 ·𝐻1

of an integrable Hamiltonian 𝐻0 and a perturbation in form of a nonintegrable Hamil-

tonian 𝐾 ·𝐻1. The parameter 𝐾 > 0 determines the strength of the perturbation. The

KAM theorem makes statements about the tori of the phase space of 𝐻, depending on

their fundamental frequencies 𝜔. That is, frequencies 𝜔 ful�lling a resonance condition

𝑚 · 𝜔 = 0 (2.5)

for any 𝑚 ∈ Z𝑁∖{0} are called commensurable and the corresponding torus is called

resonant torus. The set of resonant tori is dense in phase space of 𝐻0 but of measure

zero. The nonresonant tori with frequencies 𝜔, which do not ful�ll

|𝑚 · 𝜔| > 𝜖(𝜔)|𝑚|−(𝑁+1) |𝑚| ≡
𝑁∑︁
𝑖=1

|𝑚𝑖| ∀ 𝑚 ∈ Z𝑁∖{0} (2.6)

with some prefactor 𝜖(𝜔) independent of 𝐾, are considered to be close to resonant
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tori [19, section 7.3]. The remaining set of nonresonant tori, which are not close to

resonant tori are of �nite measure in the phase space. From Eqs. (2.4) and (2.5) follows

that orbits on nonresonant tori are dense on these tori for 𝑡 → ∞.

For𝐾 = 0 the phase space of𝐻 is identical to the regular phase space of the integrable

Hamiltonian 𝐻0. For a small perturbation 𝐾 ≪ 1 all resonant tori cease to exist as

well as the tori close to them. These regular tori are replaced by chaotic regions and

new regular tori of a di�erent topology. The details of this break-up process of resonant

tori are presented in Section 2.4.1 for 2D maps and in Section 2.5.1 for 4D maps. The

remaining nonresonant tori are deformed but still present in the slightly perturbed

phase space. They are referred to as KAM-tori. Hence, the former regular phase space

contains now both regular regions with KAM-tori and chaotic regions. Such a phase

space is called near-integrable. When the perturbation is increased further, more and

more KAM tori break, starting with the tori, which are closest to resonances in the

sense of Eq. (2.6). A broken KAM torus is called Cantorus as its remnants are given

by Cantor sets in phase space [34].

Note that for systems with an external driving the resonance condition Eq. (2.5) is

generalized to

𝑚 · 𝜔 = 2π𝑛 (2.7)

with 𝑚 ∈ Z𝑁∖{0} and 𝑛 ∈ Z. The resonance condition Eq. (2.7) is abbreviated as

𝑚1 : . . . : 𝑚𝑁⏟  ⏞  
𝑁

: 𝑛 (2.8)

and said to be a coupling resonance if 𝑛 = 0 [13]. The value |𝑚| of the coe�cient 𝑚,

see Eq. (2.6), is denoted as order of the resonance.

2.4 Trapping in 2D

The algebraic decay of the statistics of Poincaré recurrences 𝑃 (𝑡) for generic 2D sym-

plectic maps is well understood, see, e.g., reference [9]. The reason for the power-law

behavior of 𝑃 (𝑡) is that some chaotic orbits stay in con�ned regions close to the KAM

tori for long time spans . This phenomenon is called trapping and these regions are

denoted as sticky regions.

In the following sections the mechanism governing the trapping in the 2D phase space

is outlined. First the break-up process of resonant tori is examined in Section 2.4.1.

Then some of the resulting structures are identi�ed to cause the trapping close to KAM
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tori. The so-called partial barriers are investigated in Section 2.4.2.

2.4.1 Resonant tori - Poincaré-Birkhoff theorem

In Section 2.3 only the nonresonant tori are said to survive in case of a small perturbation

of the integrable Hamiltonian. In this section the fate of the resonant tori is explained for

the 2D phase space by using the Poincaré-Birkho� theorem in more detail. Furhtermore,

structures crucial to the trapping mechanism are introduced.

In the 2D phase space the tori are 1D invariant, closed lines with one fundamental

frequency 𝜔, according to Eq. (2.3). Hence, a torus is resonant if its frequency 𝜔 is

a rational number 𝜔 = 𝑛/𝑚, see Eq. (2.7). Every orbit on this resonant torus is a

periodic orbit with period 𝑚. The Poincaré-Birkho� theorem states that in case of a

perturbation not all periodic orbits on this torus cease to exist. A number of 2𝑘𝑚 of

them with period 𝑚 and with some 𝑘 ∈ N remain when the resonant torus breaks up.

In order to discuss the stability properties of these periodic points 𝑥𝑓 , the Jacobian

matrix 𝐷𝐹𝑚(𝑥𝑓 ) of the𝑚th iteration of the symplectic map 𝐹 at each periodic point 𝑥𝑓

has to be analyzed. For any symplectic map 𝐹 the eigenvalues of the Jacobian matrix

𝐷𝐹𝑚(𝑥𝑓 ) occur in form of four-tuples (𝜆, 𝜆̄, 1/𝜆, 1/𝜆̄) [33, section 3.3]. Here two cases

are of interest, because there are only two eigenvalues for the 𝑁 = 2 case such that

two of the four possibilities coalesce. The �rst of the two cases is that both eigenvalues

of 𝐷𝐹𝑚(𝑥𝑓 ) have a real part unequal to zero. Then the linearized dynamics around

𝑥𝑓 has a stable and an unstable direction and 𝑥𝑓 is called hyperbolic periodic point.

The second case is both eigenvalues of 𝐷𝐹𝑚(𝑥𝑓 ) being purely imaginary. Then the

linearized dynamics around 𝑥𝑓 is stable and given by tori centered around 𝑥𝑓 . Hence,

𝑥𝑓 is called an elliptic periodic point. According to the Poincaré-Birkho� theorem, the

2𝑘𝑚 periodic points remaining from a broken resonant torus form a chain of alternating

hyperbolic and elliptic periodic orbits.

The dynamics in the vicinity of an elliptic point can be approxmiated by a Hamil-

tonian similar to the one presented in Section 2.3 given by an integrable part with a

small perturbation. Hence, this subsystem denoted as regular island is again subject to

both the KAM theorem and the Poincaré-Birkho� theorem. This leads to a self-similar

structure of islands and their subislands in the phase space, which is referred to as

hierarchical structure [35].

From the existence of the stable direction of a hyperbolic point 𝑥𝑓 follows the existence

of a smooth stable invariant manifold 𝑊 𝑠(𝑥𝑓 ) ≡ {𝑥 ∈ 𝑈 : lim𝑡→∞ 𝐹 𝑡𝑥 = 𝑥𝑓} in the

phase space 𝑈 . Analogously, for an unstable direction a smooth unstable invariant

manifold 𝑊 𝑢(𝑥𝑓 ) ≡ {𝑥 ∈ 𝑈 : lim𝑡→∞ 𝐹−𝑡𝑥 = 𝑥𝑓} exists. The point-like intersections
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of two manifolds 𝑊 𝑠(𝑥𝑓 ) and 𝑊 𝑢(𝑥′
𝑓 ) are called homoclinic points if 𝑥𝑓 = 𝑥′

𝑓 and

heteroclinic points if 𝑥𝑓 ̸= 𝑥′
𝑓 . These points lead to chaotic dynamics [36]. If the regions

of phase space subject to such chaos are extended, then they are usually referred to as

chaotic sea.

2.4.2 Trapping mechanism

The manifolds and cantori introduced in Sections 2.3 and 2.4.1 can be used to explain

the trapping mechanism in the 2D phase space by constructing partial transport barriers

causing chaotic orbits to stay for long times close to regular tori. Every torus of the 2D

phase space is a 1D barrier to transport, enclosing a region of the phase space. This

implies that a chaotic orbit outside the enclosed region can never cross the torus in order

to get to the inside and vice versa. However, in a perturbed system the vicinity of every

KAM torus contains 1D invariant manifolds 𝑊 𝑠 and 𝑊 𝑢. When intersecting, these

manifolds form a partial barrier with the property to exchange certain small volumes

of the phase on either side of them. In addition to the described kind of partial barrier,

which is referred to as broken separatrix, the cantori are also relevant partial barriers.

There exists a hierarchy of such partial barriers in the vicinity of the remaining

KAM tori. Based on this hierarchy of partial barriers the exponent 𝛾 for the Poincaré

recurrences 𝑃 (𝑡) ∼ 𝑡−𝛾 can be estimated. In order to do so, the hierarchical structure

is modeled by a random walk on 2D regions of di�erent size, which are separated by

partial barriers with di�erent transition probabilities. For details on the modeling see

Meiss and Ott [25]. There the exponent 𝛾 is obtained as the solution of an exponential

equation. In this context log-periodic oscillations of 𝑃 (𝑡) can be addressed to nonreal

solutions of this equation.

2.5 Transition to higher dimensions

Although the power-law of the Poincaré recurrences 𝑃 (𝑡) is still present in higher di-

mensional maps, the trapping mechanism outlined in Section 2.4 for 2D maps can not

simply be generalized. In order to understand the trapping in higher dimensional maps,

this thesis focuses on 4D maps. The reason for this choice is that the structures found in

a 4D phase space are much easier to generalize to higher dimensions than the structures

found in a 2D phase space. Thus, by understanding the trapping mechanism for the 4D

maps it should be possible to understand this mechanism for even higher dimensional

maps.

Before presenting conjectures about the mechanism causing the power-law of 𝑃 (𝑡)
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in 4D symplectic maps the structural di�erences of the 4D phase space compared to

2D phase space are pointed out. Therefore, �rstly the break-up of the resonant tori

is discussed in Section 2.5.1. Then additional structures of the 4D phase space are

introduced in Sections 2.5.2 and 2.5.3, which are not present in the 2D phase space.

2.5.1 Resonant tori - structures in phase space

Although the KAM theorem is valid for arbitrary degrees of freedom, there is no gen-

uine generalization of the Poincaré-Birkho� theorem outlined in Section 2.4.1 to higher

dimensions [37, section 2.8]. Therefore, in this section the behavior of the resonant tori

of the 4D symplectic map is discussed based on the results from Todesco [11].

The 2D resonant tori of 4D symplectic maps are separated in three classes depending

on the character of the ful�lled resonance condition Eq. (2.7)

(𝑚 · 𝜔) mod 2π = 0 .

Since the following results are obtained by using normal forms, they are only valid in

the vicinity of certain �xed points of the system.

Firstly, the case 𝑚 = 𝑙 · (𝑛, 0) with 𝑙 ∈ Z and 𝑛 ∈ N is denoted single-uncoupled

resonance. Each orbit on a torus with a single-uncoupled resonance is located on 𝑛 1D

rings along the nonresonant angle Θ2, which are densely �lled by the orbit and which

are uniformly distributed along the other angle Θ1 with a distance △Θ1 = 2π/𝑛. Anal-

ogously, the case 𝑚 = 𝑙 · (0, 𝑛) is a single-uncoupled resonance, where the rings of the

orbits are along the other angle. Consequently on a torus with a single-uncoupled reso-

nance an in�nity of such rings exist, which are referred to as single-uncoupled resonance

parabolic �xed lines of period 𝑛. In case of a perturbation only two of these �xed lines

remain, one being elliptic and the other hyperbolic. As for the �xed points of a 2D map

the terms elliptic and hyperbolic state that a �xed line is stable or unstable under small

deviations of initial conditions.

The second case 𝑚 = 𝑙 · (𝑛1, 𝑛2) with 𝑙, 𝑛1 ∈ Z and 𝑛2 ∈ N is denoted single-coupled

resonance. Each orbit on a torus with a single-coupled resonance is located on a 1D

line, which is �lled densely by the orbit. Consequently, on a torus with a single-coupled

resonance an in�nity of such lines exist, which are referred to as single-coupled resonance

parabolic �xed lines. In case of a perturbation only two of these �xed lines remain, one

being elliptic and the other hyperbolic.

The last case 𝑚 = 𝑙1 · (𝑛11, 𝑛12)+ 𝑙2 ·(𝑛21, 𝑛22) with 𝑙1, 𝑙2, 𝑛11, 𝑛21 ∈ Z and 𝑛12, 𝑛22 ∈ N
is denoted double resonance. Each orbit on a torus with a double resonance consists

of 𝑛11𝑛22 points. Consequently, on a torus with a double resonance an in�nity of such
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periodic orbits exist, which are referred to as parabolic �xed points of period 𝑛11𝑛22.

In case of a perturbation only four of these periodic orbits remain. Todesco describes

di�erent options for the stability of these orbits, which are omitted here for brevity.

Furthermore, single-coupled and single-uncoupled resonances are referred to as rank-1

resonances, whereas a double resonance is also referred to as rank-2 resonance.

2.5.2 Center manifold and NHIM

In a 4D phase space a �xed point is not just elliptic or hyperbolic but can rather

combine two properties, for example giving an elliptic�hyperbolic �xed point. This

refers to the two pairs of eigenvectors of the Jacobian matrix belonging to the �xed

point. The chaotic and regular structures arising from such �xed points are discussed

in this section based on the center manifold theorem, see, e.g., reference [38, section 2.7].

The theorem is valid for general dynamical systems, but applied here to the special case

of 4D symplectic maps.

The hyperbolic component of an elliptic�hyperbolic �xed point 𝑥𝑓 to smooth 1D

invariant manifolds 𝑊 𝑠(𝑥𝑓 ) and 𝑊 𝑢(𝑥𝑓 ) known from the 2D case in Section 2.4.1. The

stable manifold 𝑊 𝑠(𝑥𝑓 ) is contracting meaning that all orbits 𝑥(𝑡) ⊂ 𝑊 𝑠(𝑥𝑓 ) converge

to 𝑥𝑓 for 𝑡 → ∞, whereas the unstable manifold 𝑊 𝑢(𝑥𝑓 ) is expanding meaning that all

orbits 𝑥(𝑡) ⊂ 𝑊 𝑢(𝑥𝑓 ) converge to 𝑥𝑓 for negative times 𝑡 → −∞.

Regarding the elliptic component of an elliptic�hyperbolic �xed point 𝑥𝑓 the center

manifold theorem states that there exists locally a 2D invariant manifold 𝐶 containing

𝑥𝑓 . Further, the eigenspace of the elliptic eigenvalues is tangential to 𝐶 at 𝑥𝑓 . Such

a manifold 𝐶 is referred to as center manifold. The dynamics restricted to a center

manifold 𝐶 is topologically equivalent to the dynamics in the vicinity of a 2D elliptic

�xed point. This implies, that the center manifold 𝐶 consists of a one-parameter family

of 1D tori, with action 𝐼0 as parameter. In this sense a center manifold 𝐶 is equivalent

to a regular island around an elliptic �xed point of the 2D phase space, see Section 2.4.1.

This statement extends to the perturbed case, for which Gra� found the center manifold

𝐶 to contain a Cantor set of KAM tori of positive measure [39]. Note that there are

examples of center manifolds 𝐶 that exist globally [38]. This is remarkable, since the

theorem grants the center manifold 𝐶 to be de�ned and smooth only on a local domain,

which can even vanish. The discussed properties of an elliptic�hyperbolic �xed point

apply correspondingly to the cases of hyperbolic�hyperbolic and elliptic�elliptic �xed

points. E.g., two 2D center manifolds exist at an elliptic�elliptic �xed point.

There are special center manifolds, which are called normally hyperbolic invariant

manifolds, abbreviated as NHIM, see, e.g., Wiggins [40]. In 4D a NHIM 𝐶NHIM is the
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center manifold of an elliptic�hyperbolic �xed point. The term normally hyperbolic

refers to fact that normally to 𝐶NHIM the expansion and contraction is much bigger

than tangentially to 𝐶NHIM, due to the hyperbolic component of the �xed point. For

a map with 𝑁 degrees of freedom a NHIM is the center manifold of a 𝑁 − 1 times

elliptic and one times hyperbolic �xed point. Note that the term NHIM applies to any

invariant manifold which is normally hyperbolic. However, since their construction via

�xed points is more concrete, the following discussions involving NHIMs restrict to this

case.

Center manifolds and especially NHIMs are neither analytically nor numerically easily

obtained due to the few conditions they have to ful�ll. They are usually approximated

algebraically by power series, see, e.g., references [41�43].

2.5.3 Arnold web

In contrast to the tori of 2D maps the tori of higher dimensional systems are not barriers

to transport in the phase space. An important consequence of this is the so-called Arnold

web [12,33,44], which is covered in this section.

A torus of a 2𝑁 -dimensional map 𝐹 is a 𝑁 -dimensional manifold and thus has the

codimension 𝑁 . But, in order to be a barrier in phase space a manifold has to have

codimension one. This is only true for regular tori in a 2D phase space. Consequently,

the tori of a 4D map and all higher dimensional maps do not separate di�erent chaotic

regions of the mixed phase space. On top of that, all resonant tori, which are dense in

the unperturbed system are replaced by regular regions surrounded by chaotic channels

in the perturbed system. Thus, the chaotic regions are dense in the perturbed system

and not separated by the remaining KAM tori. Hence, each chaotic orbit can access

any region of phase space. Note that in a 2D phase space the chaotic regions are also

dense, but separated from each other by the 1D tori. In 2D maps the perturbation has

to be increased above a critical value in order to obtain global chaotic motion [45,46].

The net-like structure of broken resonant tori by which the chaotic regions are inter-

connected is called Arnold web. The slow component of the di�usion of chaotic orbits

along this web is called Arnold di�usion. The Arnold di�usion and Arnold web are

discussed in more detail in frequency space in Section 2.6.2.

2.6 Trapping in 4D

The algebraic decay of the statistics of Poincaré recurrences 𝑃 (𝑡) for generic 4D sym-

plectic maps is subject to extensive studies, see Section 2.2. As for 2D maps the reason
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for the power-law behavior of 𝑃 (𝑡) is the trapping of chaotic orbits in sticky regions.

However, the structures governing the trapping in 2D are not su�cient to explain the

trapping in higher dimensions. The reason is that the stable and unstable manifolds

forming partial barriers in 2D have dimension one and thus are not barriers in higher

dimensional spaces. Additionally a hierarchical structure as for the 2D phase space is

not theoretically granted since the Poincaré-Birkho� theorem is not valid for higher

dimensional maps, see Section 2.5.1.

Therefore, in the following sections two conjectures about the trapping mechanism

in higher dimensional maps are presented. Firstly, the concept of generalized partial

barriers devised by Wiggins [15] is outlined in Section 2.6.1. Secondly, the approach of

frequency analysis to the trapping phenomena is highlighted in Section 2.6.2.

2.6.1 Generalized partial barriers (NHIM)

One approach to the trapping mechanism in higher dimensional maps is the attempt to

generalize the concept of partial barriers. Once such structures are found the mechanism

can be understand analogously to the 2D case. Wiggins recognized that structures

a�liated with NHIMs can form higher dimensional broken separatrices independent of

the dimension of the phase space [15]. The concept and limitations of these generalized

partial barriers is discussed in this section. Moreover, higher dimensional analogues of

broken separatrices are studied in references [47�49].

In Section 2.5.2 NHIMs 𝐶NHIM are introduced as invariant manifolds of codimension

two, which are attached to a �xed point that is elliptic apart from a 2D hyperbolic

component. Therefore, stable and unstable manifolds 𝑊 𝑠(𝐶NHIM) and 𝑊 𝑢(𝐶NHIM) can

be de�ned, containing all points that contract to or expand from the NHIM 𝐶NHIM.

These manifolds are of codimension one and are therefore barriers in phase space. In this

sense a NHIM 𝐶NHIM with 𝑊 𝑠(𝐶NHIM) and 𝑊 𝑢(𝐶NHIM) is the equivalent of a hyperbolic

�xed point 𝑥𝑓 with its stable and unstable manifolds 𝑊 𝑠(𝑥𝑓 ) and 𝑊 𝑢(𝑥𝑓 ) in the 2D

phase space. But unlike there, the intersections of the stable and unstable manifolds do

not result automatically in partial barriers. The intersection sets have to ful�ll certain

conditions [15]. However, checking these conditions is laborious. Nevertheless, some

examples are presented by Wiggins and his approach is considered, e.g., in reference [49].

Wiggins also relates the transport resulting from these generalized partial barriers to

Arnold di�usion. In terms of the NHIMs 𝐶NHIM, the Arnold di�usion occurs roughly

speaking tangent to 𝑊 𝑠(𝐶NHIM) and 𝑊 𝑢(𝐶NHIM), whereas the transport due to partial

barriers occurs transverse to these manifolds. The transport due to the latter is believed

to be dominant.
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In conclusion, although a generalization of the 2D trapping mechanism in form of

higher dimensional partial barriers is possible, the relevance of this mechanism in higher

dimensions is not clear. One reason for this is that �nding structures in a generic system,

which ful�ll the requirements for such partial barriers, is di�cult.

2.6.2 Frequency analysis

Transport in higher dimensional phase spaces is often studied in frequency space, see,

e.g., references [2, 4, 5, 16, 50, 51]. The conjectures about trapping motivated from such

investigations are outlined in this section, mainly based on the work by Martens, Davis,

and Ezra [2, 16]. In order to discuss these conjectures, the frequency space is brie�y

introduced here. A more detailed introduction follows in Section 3.2.

The aim of the frequency analysis is to numerically obtain the fundamental frequen-

cies 𝜔 ∈ T𝑁 for orbits started on certain 𝑁 -dimensional torus. The vector 𝜔 can then

be checked for resonances and visualized in frequency space if 𝑁 ≤ 3. For a 4D map

every torus appears as a point in the 2D frequency space and the set of all tori �lls

some 2D area densely. When the system is weakly perturbed this area is interrupted

by empty bands, which lie around lines representing resonance conditions 2.7. This

complies with the break-up of the resonant tori and tori close to them according to the

KAM theorem. Hence, the bands are called resonance zones. The width of these zones

increases with the strength of the perturbation, which corresponds to the break-up of

KAM tori closest to the resonance, and is bigger for resonances of lower order, both as

implied by Eq. (2.6). According to Sections 2.4.1 and 2.5.1 the broken tori are replaced

partially by chaotic regions. This means the set of the resonance zones represents the

Arnold web connecting the chaotic regions. It is possible to map chaotic orbits which

are close to tori to the frequency space. For reasons of continuity these orbits mimic

the dynamics of the tori close to them. Thus, for small time spans 𝑡 frequencies 𝜔(𝑡)

can be assigned to such an orbit. The transport of a chaotic orbit can be examined by

means of this time dependent frequency 𝜔(𝑡). Consequently, Arnold di�usion manifests

as the propagation of the frequency 𝜔(𝑡) along the resonances. Also transport per-

pendicular to the resonances is possible, which allows for a chaotic orbit to propagate

from one resonance zone to another when they overlap. This enables chaotic orbits

to propagate along a resonance zone to an intersection of resonances, called resonance

junction or rank-2 resonance, and continue from there along a di�erent resonance zone.

The propagation along the resonances turns out to be orders of magnitude slower than

perpendicular to the resonances [50].

In Section 2.4.2 two kinds of partial barriers are distinguished, namely broken sepa-
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ratrices and cantori. Martens, Davis, and Ezra attempt to generalize both in terms of

the frequency space [2, 16]. According to the authors the broken separatrix structures

are given by the boundaries of the rank-1 resonance zones. One reason for this cor-

respondence is the dimension of such a resonance-zone boundary in phase space. The

line of a rank-1 resonance in the 2D frequency space represents a 3D region in the 4D

phase space, as the resonant tori, formerly located on this line, form a one parameter

family of 2D tori. Consequently, a 2D resonance zone in frequency space represents

a 4D chaotic region in phase space. Hence, the boundary of the resonance zone is a

3D surface. This surface is assumed to be a generalized broken separatrix, e.g., of the

kind described in Section 2.6.1. The in�uence of such broken separatrices is observed

by means of trapping of chaotic orbits in the vicinity of a resonance junction. Such

a junction is a point at which two resonance conditions, and consequently in�nitely

many other, are satis�ed. Such a point represents a periodic orbit in phase space. It

is conjectured that the propagation along one resonance zone is blocked by the broken

separatrices of the other resonance zones intersecting at the junction [2]. This union

of separatrices leads to the trapping at the junction. It seems to be left to chance on

which resonance zone an orbit continues after the trapping [50]. In this context, it is

observed that the transport rate along the Arnold web is determined by this trapping

near resonance junctions rather than by the di�usion in between them [2]. Additionally,

the Arnold di�usion is faster along resonances of lower order than of higher order. This

rapid transport along low-order resonances is in accord with the so called resonance

streaming, see [2] for futher references.

Besides the separatrix structures Martens, Davis, and Ezra also convey the cantori

barriers into frequency space. They do so by noting that sometimes the transport across

lines with one pairwise noble frequency ratio,

𝜔𝑖

𝜔𝑗

= noble number , (2.9)

appears to be inhibited. Noble numbers are highly irrational numbers [9]. In a 2D phase

space KAM tori with such a frequency ratio to the external driving lead to cantori with

strongly inhibited transport across them. In higher dimensions tori ful�lling a pairwise

condition are thought to be the generalization of such irrational KAM tori. In this

sense, a line with one pairwise noble frequency ratio represents a one parameter family of

cantori in frequency space. Although, this is an object with a su�cient dimension to be a

barrier, it is not always observed to be relevant for the transport along resonances [2,16].

If such an object inhibits the transport across it, it will have holes with a more rapid

transport [16, 51]. These holes are at intersections with resonances, where Eqs. (2.7)
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and (2.9) are satis�ed simultaneously.

Besides generalizations of broken separatrices and cantori, the complement of the

Arnold web may explain the trapping. This complement consists of the KAM tori,

which break up only at very strong perturbations. For the 2D maps these are the KAM

tori with noble numbers as frequency. An e�ective generalization of noble numbers for

higher dimensions is presented by Kim and Ostlund [17]. Chaotic orbits may be trapped

in the fractal looking structure of the complement of the Arnold web. Additionally,

resonance zones can be locally narrowed by the complement of the Arnold web, which

may inhibit the transport. This is denoted as pinching but not covered here [16].

2.7 Example system

The trapping mechanism in 4D systems is studied in the next chapters based on Sec-

tions 2.5 and 2.6. A typical model system used for the study of higher dimensional

maps is the coupled standard map. In order to introduce it, �rst the 2D standard map

is presented in Section 2.7.1 and serves as a reference for the 2D case. Then the 4D

coupled standard map is presented in Section 2.7.2 as the model of concern.

2.7.1 Standard Map

In this section the well studied 2D standard map is introduced with the parameters

used in this thesis. This map has a very generic phase space. Therefore, it is a good

reference of a 2D system. It is needed for comparison with the 4D case.

The Hamiltonian 𝐻2D(𝑝, 𝑞, 𝑡) of the kicked rotor is

𝐻2D(𝑝, 𝑞, 𝑡) = 𝑇2D(𝑝) +
∑︁
𝑛∈Z

𝛿(𝑡− 𝑛)𝑉2D(𝑞) , 𝑇2D(𝑝) =
𝑝2

2
,

𝑉2D(𝑞) =
𝐾

4π2
cos(2π𝑞)

(2.10)

with the kinetic energy 𝑇2D, the potential 𝑉2D, and the kicking strength 𝐾. As the

Hamiltonian 𝐻2D(𝑝, 𝑞, 𝑡) has a time periodic driving for resonances applies Eq. (2.7).

The domains of the momentum 𝑝 and position 𝑞 are 𝑝 ∈ [−0.5, 0.5) and 𝑞 ∈ [0, 1) with
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Figure 2.1: Hierarchical phase space of the 2D map 𝐹2D for K=2.5. Some regular

orbits (red points) and a trapped orbit (blue points) with length 𝑇 ≈ 50 · 103 are

shown. The zoom boxes show smaller regular islands forming a hierarchical structure

in which the chaotic orbit is trapped.

periodic boundaries. From the Hamiltonian 𝐻2D(𝑝, 𝑞, 𝑡) follows the symplectic map 𝐹2D

(𝑝′, 𝑞′) = 𝐹2D(𝑝, 𝑞) , (2.11)

𝑝′ = 𝑝 +
𝐾

2π
sin(2π𝑞′) ,

𝑞′ = 𝑞 + 𝑝 ,

solving the equation of motion emerging from Eq. (2.10) over one period of the driving.

The kicking strength is chosen 𝐾 = 2.5.

The phase space of 𝐹2D is shown in Figure 2.1 on di�erent scales with regular orbits

in red and a trapped, chaotic orbit in blue. On the largest scale the central elliptic �xed

point with its regular island is visible. This island is surrounded by four further regular

islands. In their center are elliptic periodic points of period four. These periodic points

indicate a chain of four elliptic and four hyperbolic periodic points. The hyperbolic

points are in between the elliptic points and are not shown in the picture. This island-

around-island structure is seen again on smaller scale in the magni�cations of the middle

and right picture. The chaotic orbit is trapped within this hierarchical structure.

2.7.2 Coupled Standard Map

In this section the 4D standard map, devised by Froeschlé [52], is introduced together

with the parameters used in this thesis. In the literature 4D maps are mainly studied

for weakly coupling [4, 44, 46, 53, 54]. The focus in this thesis, however, is on a strong

coupling. This map is the model of concern throughout the following sections. Finally,

some �rst aspects of the 4D phase space of the map are discussed.
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The Hamiltonian 𝐻𝑁(𝑝, 𝑞, 𝑡) of 𝑁 coupled, kicked rotors is

𝐻𝑁(𝑝, 𝑞, 𝑡) = 𝑇𝑁(𝑝) +
∑︁
𝑛∈Z

𝛿(𝑡− 𝑛)𝑉𝑁(𝑞) , 𝑇𝑁(𝑝) =
𝑁∑︁
𝑖=1

𝑝2𝑖
2
,

𝑉𝑁(𝑞) =
𝑁∑︁
𝑖=1

𝐾𝑖

4π2
cos(2π𝑞𝑖) +

𝜉

4π2
cos

(︃
2π

(︃
𝑁∑︁
𝑖=1

𝑞𝑖

)︃)︃ (2.12)

with kinetic energy 𝑇𝑁 , potential 𝑉𝑁 , kicking strengths 𝐾𝑖 and coupling parameter 𝜉.

The domains of the momentum 𝑝 and position 𝑞 are 𝑝 ∈ [−0.5, 0.5)𝑁 and 𝑞 ∈ [0, 1)𝑁

with periodic boundaries. From the Hamiltonian 𝐻𝑁(𝑝, 𝑞, 𝑡), follows for 𝑁 = 2 the

symplectic map 𝐹4D

(𝑝′, 𝑞′) = 𝐹4D(𝑝, 𝑞) , (2.13)

𝑝′1 = 𝑝1 +
𝐾1

2π
sin(2π𝑞′1) +

𝜉

2π
sin (2π (𝑞′1 + 𝑞′2)) ,

𝑝′2 = 𝑝2 +
𝐾2

2π
sin(2π𝑞′2) +

𝜉

2π
sin (2π (𝑞′1 + 𝑞′2)) ,

𝑞′1 = 𝑞1 + 𝑝1 ,

𝑞′2 = 𝑞2 + 𝑝2 ,

where the kicking strengths are set to 𝐾1 = 2.25 and 𝐾2 = 3.0. By the choice of the

coupling parameter 𝜉 a weakly coupled 4D map 𝐹WC with 𝜉 = 0.1 and a strongly coupled

map 𝐹SC with 𝜉 = 1 are de�ned. Note that in the literature the coupling parameter

is usually chosen to be very small 𝜉 < 10−2 [2, 4, 10, 46]. In contrast to this also

strongly coupled systems are very interesting and relevant objects of investigations [55].

Therefore, the present work focuses on the strongly coupled map 𝐹SC. For comparison

the weakly coupled system 𝐹WC can be found in appendix A.2.

Since the phase space of 𝐹SC is due to the strong coupling more perturbed than the

phase space of 𝐹2D, the regular tori of 𝐹SC are con�ned to a much smaller region. 𝐹SC

has an elliptic�elliptic �xed point 𝑥𝑓 at the center 𝑥𝑓 = (0, 0, 0.5, 0.5). The linearization

of the map at 𝑥𝑓 is given by the Jacobian 𝐷𝐹SC(𝑥𝑓 )

𝐷𝐹SC(𝑥𝑓 ) =

(︂
𝜕(𝐹SC(𝑥𝑓 ) · 𝑒𝑗)

𝜕𝑥𝑖

)︂
𝑖𝑗

=

⎛⎜⎜⎜⎜⎝
1 + 𝐵1 + 𝐶 𝐶 𝐵1 + 𝐶 𝐶

𝐶 1 + 𝐵2 + 𝐶 𝐶 𝐵2 + 𝐶

1 0 1 0

0 1 0 1

⎞⎟⎟⎟⎟⎠
with 𝐵𝑖 = 𝐾𝑖 cos(2π(𝑝𝑖 + 𝑞𝑖)) and 𝐶 = 𝜉 cos(2π(𝑝1 + 𝑝2 + 𝑞1 + 𝑞2)). The eigenvalues
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{𝜆𝑖}𝑖=1...4 of the Jacobian 𝐷𝐹SC(𝑥𝑓 ) at an elliptic�elliptic �xed point 𝑥𝑓 can be written

as {𝜆𝑖}𝑖=1...4 = {ei𝜔1 , e−i𝜔1 , ei𝜔2 , e−i𝜔2}. The frequencies are 𝜔1/(2π) ≈ 0.30632 and

𝜔2/(2π) ≈ 0.12173. Each eigenvalue has a corresponding 2D eigenvectorspace tangential

to a 2D center manifold, see Section 2.5.2.

In discussions about the phase space the notation 𝑒𝑝𝑗 and 𝑒𝑞𝑗 or 𝑒𝑖 is used for the

normalized base vectors of the momentum and position coordinates. The center of the

phase space (0.5, 0.5, 0, 0) is used as point of origin.





3 Representations of the 4D phase

space

The 4D phase space of the coupled standard maps 𝐹WC and 𝐹SC introduced in Sec-

tion 2.7.2 cannot be visualized directly like the 2D phase space of the standard map

𝐹2D introduced in Section 2.7.1. Instead, lower dimensional representations of the phase

space have to be used for investigations of 𝐹WC and 𝐹SC. These representations are

listed in this chapter. First visualization methods for higher dimensional phase spaces

are presented in Section 3.1. Secondly, in Section 3.2 the frequency space is explained

and some issues of frequency analysis are discussed. As an application of the introduced

representations, the tori structure of 𝐹SC is examined in the phase and the frequency

space in Section 3.3.

3.1 Visualization methods of the 4D phase space

Since phenomena occurring in 2D symplectic maps, such as trapping, are studied mainly

in phase space, it is useful also for 4D symplectic maps to visualize their 4D phase space.

This enables a direct comparison of the structures in 4D phase space with the known

structures in the 2D case. Therefore in this section di�erent methods are introduced,

which attempt to visualize the 4D phase space. A regular orbit of the strongly coupled

4D map 𝐹SC serves as an example for the di�erent methods.

3.1.1 2D Projections

Since a 2D phase space is given by the momentum�position plane (𝑝, 𝑞), a 4D phase

space can be visualized by two momentum�position planes, (𝑝1, 𝑞1) and (𝑝2, 𝑞2). Thus,

orbits in the 4D phase space are projected onto planes. Instead of the planes (𝑝1, 𝑞1)

and (𝑝2, 𝑞2) any other skew planes can be used. Also a di�erent number of planes, e.g.,

the three planes (𝑝1, 𝑞2), (𝑝2, 𝑞1), and (𝑝1, 𝑝2) can be considered simultaneously.

This method of 2D projections allows for a direct comparison with 2D phase spaces,

especially for weakly coupled maps such as 𝐹WC. In this case the 2D projections of the
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Figure 3.1: 2D projections of a regular orbit (red) with length 𝑇 = 105 of the

strongly coupled 4D map 𝐹SC, see Eq. (2.13).

map without coupling can be compared to the projections of the map with di�erent

coupling parameters. However, for orbits of a strongly coupled map the 2D projections

are hard to interpret. This is demonstrated by the example in Figure 3.1, where the

regular torus looks like it intersects itself. Nevertheless, 2D projections of orbits are

used for the analysis of fundamental frequencies as introduced in Section 3.2.

3.1.2 Method of color and rotation

Since the 3D space is comprehensible, it can be employed for visualizing the 4D phase

space. However, on a 2D screen a 3D space is only understandable by rotation, which

reveals the spatial relations regarding the missing dimension.

In order to visualize the 4D phase space with the available 3D space, every point

of the 4D phase space is projected to the 3D space of three coordinates and colored

corresponding to the remaining coordinate, see, e.g., reference [56]. As an example,

Figure 3.2 shows the regular orbit from Figure 3.1 projected to the coordinates (𝑝1, 𝑞1, 𝑞2)

using a red to blue colormap for 𝑝2. This color map is used throughout the thesis for

the method of color and rotation.

In the method of color and rotation objects are depicted with all their spatial relations.

This is advantageous for objects with a dimension 𝐷 ≤ 3, e.g., 2D tori, as seen in

Figure 3.2, because such objects are depicted with their real dimensionality, and thus

their principle structure is visible. Therefore this method is particularly useful, when

visualizing a few number of tori. However, visualizations of several orbits or even orbits

�lling or covering a 4D object can look irritating. For such cases the method of sections

and rotation presented in Section 3.1.3 is preferred.
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Figure 3.2: 3D projection of a regular orbit with length 𝑇 = 105, same as in

Figure 3.1, according to the method of color and rotation. The orbit is projected to

the coordinates (𝑝1, 𝑞1, 𝑞2) using a red to blue colormap for 𝑝2 as indicated by the

colorbar.

3.1.3 Method of phase-space sections

The 4D phase space can also be visualized in the 3D space by depicting a thin 3D

section of it. Such a section 𝑠𝑛, 𝐷, 𝜖 of the phase space 𝑈 ⊂ R4 is de�ned, e.g., by the

normal form of a planar equation

𝑠𝑛, 𝐷, 𝜖 ≡ {𝑥 ∈ 𝑈 : |𝑥 · 𝑛−𝐷| < 𝜖} , (3.1)

with the parameters 𝐷 ∈ R, a normalized vector 𝑛 ∈ 𝑅4, and 1 ≫ 𝜖 > 0. Only points,

which are elements of 𝑠𝑛, 𝐷, 𝜖, are depicted in the 3D space according to the orthonormal

coordinates {𝑒𝑖}𝑖=1,2,3, for which 𝑒𝑖 · 𝑒𝑗 = 𝛿𝑖𝑗 and 𝑒𝑖 · 𝑛 = 0. Therefore, for an orbit of

length 𝑇 typically only ∼ 𝑇 · 𝜖 points are visible in the section.

Depictions for several sections with di�erent parameters 𝑛, 𝐷, 𝜖 give an idea of the

4D phase space. In this thesis the parameters of Eq. (3.1) are chosen as 𝑛 = 𝑒𝑝2 ,

𝐷 = 0, and 𝜖 ∈ [10−4, 10−5], such that points are elements of the section when their

𝑝2 coordinate ful�lls |𝑝2| < 𝜖. In the following this set of parameters is abbreviated

with |𝑝2| < 𝜖. Points of regular and chaotic orbits are shown as red and blue points,

respectively and for regular orbits usually 4000 points within the section are shown, see,

e.g., Figures 3.3 and 3.4(a). Such a depiction of the phase space in form of a section is

referred to as phase-space section [10, 52, 57,58].

Note that phase-space sections can deceive about the real dimensionality and connec-
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Figure 3.3: Visualization of a regular orbit (red ellipses), same as in Figure 3.1,

in form of a phase-space section. The section parameters are 𝑛 = 𝑒𝑝2 , 𝐷 = 0, and
𝜖 = 10−5, abbreviated by |𝑝2| < 10−5. The orbit is iterated until 4000 points are

in the section. For comparision the projection of the same orbit as in Figure 3.2 is

shown with a reduced opacity.

tion of objects. E.g., in Figure 3.3 a 2D torus appears as two separated ellipses. These

two separated objects occur because the torus intersects the section twice. Depending

on the orbit even more intersections and therefore more separated objects belonging to

the same orbit are possible.

The 1D ellipses resulting from the 2D torus in Figure 3.3 illustrate the fact that objects

of the 4D phase space appear in the phase-space section with a dimension reduced by

one. Hence, compared to the method of color and rotation, see Section 3.1.2, the method

of section and rotation has the advantage, that 4D objects are depicted as 3D objects,

such that they become comprehensible. For instance a family of tori appears as a family

of ellipses, forming a 3D island, see Figure 3.4(a).

In Figure 3.4 a phase-space section for the weakly coupled 4D map 𝐹WC is shown with

regular orbits and a chaotic orbit, compared to the phase space of the 2D map 𝐹2D with

𝐾 = 2.25. Since, according to Eqs. (2.11) and (2.13), the 4D map 𝐹WC corresponds to

two standard maps with parameters 𝐾1 and 𝐾2, that are weakly coupled, the depicted

phase-space section looks similar to the phase space of the standard map 𝐹2D with a

parameter 𝐾 = 𝐾1.

Additionally in some �gures a chaotic orbit 𝑥(𝑡) is not just colored blue but rather

every point of the orbit has a color representing its time 𝑡. This is referred to as

orbit colored by time 𝑡 and the same color map used for the method in Section 3.1.2 is

employed for this, see for example Figure 5.5(b).
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(a) 4D map 𝐹WC, 𝑇 ≈ 19 · 106
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(b) 2D map 𝐹2D with 𝐾 = 2.25

Figure 3.4: Example for a phase-space section for (a) the 4D map 𝐹WC, see

Eq. (2.13). Shown is the section |𝑝2| < 𝜖, with regular tori (red, 𝜖 = 10−5) and

an example of a trapped orbit (blue, 𝜖 = 10−4). For comparison the phase space of

the 2D map 𝐹2D with 𝐾 = 2.25, see Eq. (2.11) is shown in (b), with regular tori

(red) and a chaotic orbit (blue). The captions contain the corresponding map and

for (a) the length 𝑇 of the trapped orbit.

3.2 Frequency space

Instead of depicting the original 4D phase space, it is sometimes advantageous to ex-

amine the dynamics in the 2D frequency space, because this space requires only half of

the dimensions. Also the transport in a higher dimensional phase space is often studied

by means of this frequency analysis, see Section 2.6.2. While Section 2.6.2 only gives

a brief discussion of the known dynamics in frequency space the frequency analysis is

introduced in more detail here. The calculation of the fundamental frequencies 𝜔 as

suggested by Laskar [14,59,60] is explained in Section 3.2.1. The issues of this method

which are especially encountered for the strongly disturbed map 𝐹SC are discussed in

Section 3.2.2 and solutions are suggested. The parameters of the numerical analysis

of fundamental frequencies which are motivated by this discussion are presented in

Section 3.2.3.

3.2.1 Analysis of fundamental frequencies

The term frequency analysis refers to the fundamental frequencies 𝜔 of a torus of a

symplectic map 𝐹 . One way to obtain the frequencies 𝜔 is by Laskar's numerical

analysis of fundamental frequencies [14, 59, 60], which is outlined here for 𝑁 degrees of

freedom.
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Generally, Laskar's frequency analysis seeks to approximate a function 𝑧 : [0, 𝑇 ] →
C𝑁 , by a quasiperiodic function 𝑧(𝑡). For example choosing 𝑧(𝑡) to be the𝑁 -dimensional

vector

𝑧(𝑡) ≡ 𝑞(𝑡) − i𝑝(𝑡) , (3.2)

with momentum and position 𝑝, 𝑞 ∈ R𝑁 , this means for the components of 𝑧(𝑡)

𝑧𝑖(𝑡) =
𝑀∑︁

𝑚=1

ei𝜔̃𝑖,𝑚𝑡𝑎̃𝑖,𝑚 +
1

𝑇

𝑇∫︁
0

d𝑡 𝑧𝑖(𝑡) (3.3)

with frequencies 𝜔̃𝑖,𝑚 ∈ T and complex amplitudes 𝑎̃𝑖,𝑚 ∈ C. The average value of 𝑧(𝑡),

represented by the second term in Eq. (3.3), can be subtracted from 𝑧(𝑡) beforehand

and is therefore neglected in the following. In order to determine the parameters 𝜔̃𝑖,𝑚

and 𝑎̃𝑖,𝑚, the original function 𝑧(𝑡) is projected onto elements of the base {ei𝜔̃𝑡}𝜔̃∈T via

a scalar product

𝜑𝑖(𝜔̃) ≡ ⟨ei𝜔̃𝑡|𝑧𝑖(𝑡)⟩𝜒 , (3.4)

which is de�ned as

⟨𝑓(𝑡)|𝑔(𝑡)⟩𝜒 =
1

𝑇

𝑇∫︁
0

d𝑡 𝑓(𝑡)𝑔(𝑡)𝜒(𝑡) , (3.5)

where the limits of the integral are given by the domain of 𝑧(𝑡). The window function

𝜒(𝑡) is a positive weight function, which is normalized with respect to the limits of the

integral

1

𝑇

𝑇∫︁
0

d𝑡 𝜒(𝑡) = 1 .

The window function 𝜒(𝑡) is such that the considered product 𝑧(𝑡)𝜒(𝑡) is a quasiperiodic

function. As in references [14, 59,60] the Hanning window �lter is used here de�ned as

𝜒(𝑡) = (1 − cos(2π 𝑡/𝑇 )) .

This increases the accuracy of the discrete Fourier transformation which is performed

in the following.
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Laskar suggests to identify the �rst frequencies 𝜔̃𝑖, 1 with the frequencies 𝜔̃max
𝑖 at which

the absolute value of the overlap 𝜑𝑖(𝜔̃) is maximal,

|𝜑𝑖(𝜔̃
max
𝑖 )| = max

𝜔̃∈T
|𝜑𝑖(𝜔̃)| = max

𝜔̃∈T
|⟨ei𝜔̃𝑡|𝑧𝑖(𝑡)⟩𝜒| (3.6)

which leads to

𝜔̃𝑖, 1 = 𝜔̃max
𝑖

𝑎̃𝑖, 1 = 𝜑𝑖(𝜔̃
max
𝑖 ) .

This corresponds to an orthogonal projection of 𝑧(𝑡) to the base vectors {ei𝜔̃𝑖, 1𝑡}𝑖=1...𝑁 .

This algorithm can be applied again to the remaining function 𝑧
(1)
𝑖 (𝑡)

𝑧
(1)
𝑖 (𝑡) ≡ 𝑧𝑖(𝑡) − ei𝜔̃𝑖, 1𝑡𝑎̃𝑖,𝑚 . (3.7)

The resulting exponential functions {ei𝜔̃𝑡}𝜔̃∈T are not orthonormal to each other with

respect to the scalar product of Eq. (3.4). Therefore, for every component 𝑖 the newly

obtained exponential function ei𝜔̃𝑖, 2𝑡 has to be orthonormalized with respect to the �rst

one ei𝜔̃𝑖, 1𝑡. Iterations of this process determine successively higher orders of Eq. (3.3).

In particular, this algorithm can compute the fundamental frequencies 𝜔 of regular

tori. Laskar suggests that a component of the frequency vector 𝜔𝑖 is the dominant

frequency 𝜔̃𝑖, 1 of the corresponding projection 𝑧𝑖(𝑡), see Eqs. (3.2) and (3.3). Laskar

mentions two restrictions to the algorithm: the method should give accurate frequencies

for rapidly decreasing amplitudes 𝑎̃𝑖,𝑚 [14] and for systems not so far from integrabil-

ity [60]. Furthermore, the algorithm can be applied to some chaotic orbits for a certain

time span. Opposed to the frequencies of a regular torus, the obtained frequencies 𝜔(𝑡)

will not be constant but time dependent.

3.2.2 Problems of Laskar’s method

The frequency analysis is based on projections of phase-space vectors. This causes

problems for strongly perturbed maps such as 𝐹SC, see Section 2.7.2. Since such maps

are seldom studied, these issues are not discussed in the literature. The problems are

presented here along with suggestions for their solution.

In the following the complex vector 𝑧(𝑡) of a regular orbit 𝑥(𝑡) is considered according

to Eq. (3.2). First of all the numerically obtained frequencies 𝜔̃ are compared to the

fundamental frequencies 𝜔 of the orbit 𝑥(𝑡). The problems of Laskar's algorithm are

discussed on the basis of this comparison.
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According to Section 3.2.1 the frequencies 𝜔̃ are obtained separately from every com-

ponent of 𝑧(𝑡). The components of 𝑧(𝑡) correspond to projections of the dynamics to

each degree of freedom (𝑝𝑖, 𝑞𝑖)𝑖=1...𝑁 . Note that the following arguments are also valid

for other projections, e.g., for the single components 𝑝1(𝑡), 𝑝2(𝑡), 𝑞1(𝑡), 𝑞2(𝑡) of the orbit

𝑥(𝑡).

According to Section 2.3 every regular orbit 𝑥(𝑡) = (𝑝(𝑡), 𝑞(𝑡)) can be expressed

by the action�angle coordinates 𝑥(𝑡) = 𝑥(𝐼(𝑡), Θ(𝑡)) of the corresponding torus. For

perturbed systems these are the action�angle coordinates of a KAM torus. Since the

action coordinates are constant on a torus, they are neglected in the following and the

complex 𝑧(𝑡) can be given by a Fourier series of the angles Θ

𝑧(Θ(𝑡)) = 𝑞(Θ(𝑡)) − i𝑝(Θ(𝑡))

=
∑︁

𝑚∈Z𝑁

ei𝑚·Θ(𝑡)𝑎𝑚 (3.8)

with complex amplitudes 𝑎𝑚 ∈ C𝑁 . E.g., for 𝑁 = 2 the amplitudes 𝑎𝑚 are given by

𝑎𝑚 =

(︂
1

2π

)︂2
2π∫︁
0

2π∫︁
0

dΘ1 dΘ2 e−i𝑚·Θ𝑧(Θ) ∀𝑚 ∈ Z2 .

Substituting in Eq. (3.8) the dynamics of the angles Θ(𝑡) given by Eq. (2.4)

Θ(𝑡) = (Θ0 + 𝜔𝑡) mod 2π

with the fundamental frequencies 𝜔 of the torus, it is obtained [61]

𝑧(𝑡) =
∑︁

𝑚∈Z𝑁

ei𝑚·𝜔𝑡𝑎𝑚 (3.9)

by rede�ning the amplitudes

𝑎𝑚ei𝑚·Θ0 → 𝑎𝑚 .

Eq. (3.9) relates 𝑧(𝑡) to the fundamental frequencies 𝜔 of the regular torus. The fre-

quencies 𝜔𝑖 appear in the exponents of the terms with 𝑚 = 𝑒𝑖. All other frequencies

𝑚 ·𝜔 with 𝑚 ̸= 𝑒𝑖 are harmonics of 𝜔. The amplitudes 𝑎𝑚 in Eq. (3.9) result roughly

speaking from the arrangement of the invariant torus in phase space, in contrast to 𝜔,

which describes the dynamics on the torus. In general, the amplitudes 𝑎𝑚 of the har-

monics 𝑚 · 𝜔 are not zero. This is a consequence of the projection to the components
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of 𝑧(𝑡).

Note that the components of 𝑧(𝑡) in Eq. (3.9) have already the quasiperiodic form of

Eq. (3.3). In contrast to Eq. (3.3) the di�erent components of 𝑧(𝑡) contain all the same

information about the dynamics in terms of the frequency vector 𝜔 and di�er only in

their amplitudes.

In order to obtain 𝜔 from 𝑧(𝑡) by means of Laskar's frequency analysis, the maxima

of the functions |𝜑𝑖(𝜔̃)| de�ned in Eq. (3.4) have to be evaluated. Considering Eq. (3.9)

as a representation of the product 𝑧(𝑡)𝜒(𝑡), it follows for 𝜑(𝜔̃)

𝜑(𝜔̃) ≡ ⟨ei𝜔̃𝑡|𝑧(𝑡)⟩𝜒

=
1

𝑇

𝑇∫︁
0

d𝑡 e−i𝜔̃𝑡𝑧(𝑡)𝜒(𝑡)

=
∑︁
𝑚

𝑎𝑚
1

𝑇

𝑇∫︁
0

d𝑡 ei(𝑚·𝜔−𝜔̃)𝑡

=
∑︁
𝑚

𝑎𝑚

⎧⎨⎩1 for 𝑚 · 𝜔 − 𝜔̃ = 0 mod 2π

ei(𝑚·𝜔−𝜔̃)𝑇−1
i(𝑚·𝜔−𝜔̃)𝑇

else
(3.10)

The 𝑇 in (3.10) is the length of the orbit 𝑥(𝑡) belonging to 𝑧(𝑡). 𝑇 is either chosen

arbitrarily large or at least of the order 𝑇 ∼ 103. Consequently, |𝜑𝑖(𝜔̃)| is suppressed
by 𝑇 , for all frequencies 𝜔̃ that do not satisfy

𝜔̃ = (𝑚 · 𝜔) mod 2π (3.11)

for any 𝑚 ∈ Z𝑁 . All frequencies, which ful�ll Eq. (3.11), can form a maximum of

|𝜑𝑖(𝜔̃)|. Only the amplitudes 𝑎𝑚 distinguish between these frequencies, that is the

dominant frequency depends on the geometry of the torus in phase space.

For weakly coupled maps the 𝑎𝑚 are usually such that the dominant frequency of

𝑧𝑖(𝑡) is indeed the fundamental frequency 𝜔𝑖 for all components 𝑖. However, for strongly

perturbed maps the tori are very deformed. For 𝐹SC the numerically obtained frequen-

cies 𝜔̃ = (𝜔1, 𝜔2) of many regular orbits lie on resonances such as 1 : −1 : 0, 1 : 1 : 1 or

𝑚 : 1 : 𝑛, although resonances are not possible for regular tori in a perturbed system,

see Section 2.3. Therefore, the resonant frequencies 𝜔̃ are not the fundamental frequen-

cies 𝜔 = (𝜔1, 𝜔2), but numerical artifacts resulting from Eq. (3.11). For instance, the

resonance 1 : −1 : 0 means that both components of 𝑧(𝑡) have the same maximum,

e.g., at the �rst fundamental frequency 𝜔̃1 = 𝜔1 and 𝜔̃2 = 𝜔1. Likewise, the resonance

1 : 1 : 1 means that the frequencies 𝜔̃ have the same absolute value but a di�erent
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sign, e.g., 𝜔̃1 = 𝜔1 and 𝜔̃2 = −𝜔1. Finally, the resonance 𝑚 : 1 : 𝑛 suggests a scenario

like 𝜔̃1 = 𝜔1 and 𝜔̃2 = 𝑚𝜔1 with 𝑚 ∈ Z. In reference [2] the ambiguity resulting from

Eq. (3.11) is acknowledged by de�ning an ambiguity index by which the quality of the

obtained results is estimated.

However, usually one of the frequencies 𝜔 is obtained correctly. This is the dominant

frequency 𝜔1, whose corresponding angle Θ1 has the bigger spatial relevance for the torus

and therefore bigger a�liated amplitudes in Eq. (3.9). Based on this, the ambiguity for

the second frequency 𝜔2 due to Eq. (3.11) might be solved by considering 𝑁𝜔 orders of

frequencies for every component of 𝑧(𝑡) according to Eq. (3.7). Within the resulting set

of 𝑁 · 𝑁𝜔 frequencies several numerically obtained values 𝜔̃ appear more than once as

frequencies might be present in more than just one component according to Eq. (3.9). If

the𝑁 ·𝑁𝜔 frequencies are reduced to a unique subset, then this subset can be searched for

a nonresonant pair, whose linear combinations give the remaining frequencies of the set

in the sense of Eq. (3.11). The importance of the frequencies in terms of the magnitude

of the maximum in Eq. (3.6) can be an additional guideline in the determination of the

nonresonant pair of frequencies.

This search does not work always due to the limited accuracy of the frequencies.

When the spatial relevance of the angle Θ2 is too small, that is when the 2D torus looks

like a thin tube, see e.g. Figure 3.2, it might be impossible to obtain 𝜔2 numerically.

When the deformation is so strong, that the torus is twisted, the dominant frequency

𝜔1 can be suppressed compared to its higher harmonics in Eq. (3.9). In this case the

right frequency 𝜔1 might not be obtained in any component or order of 𝑧(𝑡). It can

only be assumed that the obtained dominant frequency 𝜔̃ is of the form

𝜔̃ = (𝑚 · 𝜔1) mod 2π = 𝑚 · 𝜔1 + 2π𝑛 (3.12)

with 𝑚,𝑛 ∈ Z. The parameter 𝑚 might be guessed from depictions of the orbit 𝑥(𝑡)

in phase space by means of the methods presented in Sections 3.1.1 and 3.1.2. For

instance, when a torus looks like it is twisted three times around the center of the phase

space, the division of 𝜔̃ by three might result in the right frequency 𝜔1, see Onken [62].

Finally, tori which split up in disjoint parts have to be considered separately. Their

dominant frequency describe the dynamics between their parts as it is the case for tori

in the vicinity of elliptic�elliptic periodic points. Using only the points belonging to one

part the dynamics within the parts can be examined.

In conclusion, not all problems of Laskar's frequency analysis can be solved in general.

The main problem is that the frequency analysis is applied to 2D projections of the

higher dimensional phase space, which is especially troublesome for strongly deformed
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tori. Some information about the dynamics of a regular orbit 𝑥(𝑡) is lost in these

projections. Thus, it would be better to have a frequency analysis, which can be applied

directly to the phase space vector 𝑥(𝑡).

3.2.3 Numerical implementation

In this section the numerical setup for the frequency analysis is presented as it is used

for the following investigations. The parameters necessary for Laskar's algorithm are

introduced. This includes some pragmatic solutions for the problems discussed in Sec-

tion 3.2.2.

For regular orbits 212 points are used to form the signal 𝑧(𝑡), see Eq. (3.2). Chaotic

orbits are split into disjoint parts of △𝑡 = 212 points and a frequency is calculated for

each part, leading to time dependent frequencies 𝜔(𝑡). For the maximum search, see

Eq. (3.6), the method described in reference [63] is used. According to this work, the

errors of the frequencies are expected to be less than 10−6 for the chosen time span △𝑡.

The conceptual issues presented in Section 3.2.2 are avoided in the majority of the

cases by the following procedure. Firstly, the 𝑧1(𝑡) component is considered. The

dominant frequency 𝜔1 is determined and all harmonics up to order three, that is |𝑚| ≤ 3

in Eq. (3.12), are subsequently subtracted from 𝑧1(𝑡), see Eq. (3.7). Then the dominant

frequency 𝜔2 of the modi�ed 𝑧1(𝑡) is determined. If 𝜔1 and 𝜔2 are too close to a resonance

condition they are discarded and the procedure is run instead for the 𝑧2(𝑡) component.

This procedure is discussed in detail for an example in Section 3.3.

The signs of the frequencies are neglected by restricting the frequency space to [0,π).

All frequencies 𝜔𝑖 with 𝜔𝑖 > π are projected to the restricted frequency space by 𝜔′
𝑖 =

2π− 𝜔𝑖.

3.3 Example: regular tori in phase and frequency

space

The method of sections and rotation, introduced in Section 3.1.3, and the frequency

analysis, introduced in Section 3.2, are used to study the regular tori in the 4D phase

space of the strongly coupled map 𝐹SC. Some groups of regular tori are named for

reference in the following sections. In this context, also the manual correction and

interpretation of the results in frequency space are demonstrated.

In order to obtain regular orbits points on a grid in phase space are iterated and all

points, which enter into a region with too high Lyapunov-Exponents [64], are removed.
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This algorithm is adopted from Richter and more details can be found in his disserta-

tion [58]. Note that the algorithm sometimes returns orbits, which are not regular but

merely trapped for very long times. This is a problem that has not been solved yet, but

for the purpose of this thesis a su�cient amount of the orbits seems to be regular. Here

1885 orbits, each with 4000 points in the section |𝑝2| < 10−5, are used to represent the

regular tori.

The frequencies of the regular orbits are calculated by projecting the orbits to the

(𝑝1, 𝑞1)-plane, as described in Section 3.2.3. In contrast here no harmonics are neglected,

such that the manual correction of the frequencies can be demonstrated. The resulting

picture of the regular tori in frequency space is shown in Figure 3.5(a). Every regular

orbit appears as a point in frequency space. Some of these points lie on lines repre-

senting a certain resonance. According to Section 2.5.1, regular orbits with resonant

frequencies are either periodic orbits or �xed lines. Due to their dimensionality it is

unlikely that such orbits are found by a grid in phase space. Nevertheless, a lot of orbits

in the frequency space of Figure 3.5(a) lie on resonances. Such resonant frequencies can

occur as artifacts of the frequency analysis, as discussed in Section 3.2.2. Therefore the

frequencies of the orbits, that lie on a resonance in Figure 3.5(a), are checked by calcu-

lating them again for the projection to a di�erent plane, namely the (𝑝2, 𝑞2)-plane. The

newly obtained frequencies of the formerly resonant orbits are shown in Figure 3.5(b)

highlighted with the same colors as in Figure 3.5(a). In addition, in Figure 3.5(a), all the

frequencies that do not lie on a resonance are depicted as red points. These frequencies

are assumed to be correct and therefore again shown in Figure 3.5(b).

In Figure 3.5(b), the majority of the non-red colored orbits are not on the resonance

lines anymore. Usually they di�er in one coordinate from their former position in

Figure 3.5(a). For instance the blue points of the resonance 7 : −1 : 2 appear with

a bigger 𝜔2, such that they are in the vicinity of the red points in the zoom box. In

phase space the orbits corresponding to the blue colored frequencies are all close to

each other in phase space, as can be seen in Figure 3.9, where the same blue is used.

Therefore, these orbits are expected to be close to each other also in frequency space.

Consequently the blue colored frequencies, which are still on the resonance 7 : −1 : 2

in Figure 3.5(b), are wrong. Their correct 𝜔2 should be such that these points are close

to the frequencies in the zoom box in Figure 3.5(b), as are the other blue points.

Note that the corrected frequencies of the blue orbits are located at the edge of the

structure indicated by the red points in the zoom box. In the phase-space section the

ellipses representing these orbits have a smaller radius than the ellipses of the orbits of

the red colored frequencies. In chapter 4, especially Section 4.2.3, this property is found

to make the frequency analysis of these orbits problematic. Analog considerations, as
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(a) Using (𝑝1, 𝑞1)
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(b) Correction using (𝑝2, 𝑞2)

Figure 3.5: Manual correction of frequencies of regular tori of the 4D map 𝐹SC,
see Eq. (2.13). (a) Result for frequencies of the regular orbits (red points), when

projecting to the (𝑝1, 𝑞1) plane. Frequencies that lie on resonances are highlighted

in different colors and the according resonance lines are inserted in the same color.

The zoom box shows a magnification of a group of regular orbits. (b) Same as (a),

except that for the regular orbits, which lie on resonances in (a) (all non-red points),

the frequencies are obtained for the projection to the (𝑝2, 𝑞2) plane. Note that here
instead of the resonances 7 : 0 : 1 and 4 : 1 : 1, as in (a), the resonances 7 : 0 : 2 and

−1 : 2 : 0 are shown.
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(b) 𝜔1 > 𝜔2

Figure 3.6: Inversion of frequencies, in order to fulfill 𝜔1 > 𝜔2, of the regular orbits

considered in Figure 3.5. The frequencies are colored as in Figure 3.5, using a smaller

section of frequency space. The dotted line represents the resonance 1 : −1 : 0. The
inversion causes all points above this line to be mirrored with respect to it. The

subfigures show (a) the frequency space before the inversion, same as Figure 3.5(b),

and (b) after the inversion. In (b) labeled boxes are inserted, demonstrating the

sections of frequency space used for the following figures.
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outlined for the blue colored frequencies, apply to the frequencies on the resonance

5 : 1 : 1, colored green, on the resonance 1 : 3 : 1, colored gray, and on the resonance

1 : −1 : 0, colored black. For the resonance 1 : −1 : 0 some of the problematic orbits

turn out to be rather chaotic, as seen in phase space for the blue and green points in

Figure 3.10. The most important deviations from these observations are the purple

points, which are at �rst on the resonance 7 : 0 : 1 and then on the resonance 7 : 0 : 2,

the orange points, which are at �rst on the resonance 4 : 1 : 1 and then on the resonance

−1 : 2 : 0, and the bright blue points, which stay for both projections on the resonance

−1 : 3 : 0. This behavior is going to be explained once the frequency space is related

to the phase-space section. It is important to emphasize, that Figure 3.5(b) shows

a synthetic result, taking into account the frequencies obtained for both projections-

planes, (𝑝1, 𝑞1) and (𝑝2, 𝑞2). The result for just the (𝑝2, 𝑞2)-plane has the same problems

as Figure 3.5(a), where di�erent orbits have resonant frequencies.

It has to be pointed out, that the assignment of the frequencies 𝜔1 and 𝜔2 is exchange-

able for every point. The algorithm assigns the most important frequency to 𝜔1 and

the second most to 𝜔2. Since here all tori should be related to each other in frequency

space, the global rule 𝜔1 > 𝜔2 is peferable. This rule causes all points above the diagonal

line, the resonance 1 : −1 : 0, to be mirrored with respect to it, as is demonstrated in

Figure 3.6. In the corrected frequency space in Figure 3.6(b) almost all orbits have in-

commensurable frequencies. Thus, their points are assumed to be uniformly distributed

on the corresponding tori. Therefore, these regular orbits are considered to represent

the regular tori not only in frequency space but also in the phase space.

Finally in Figure 3.7(a) the manually corrected frequency picture of the regular tori is

shown and compared to the tori in a phase-space section in Figure 3.7(b). The regular

tori form di�erent clusters in frequency space and accordingly in phase space, which

are denoted for future reference as the following: In Figure 3.7 the central island is

colored in blue, the outer ring in green, the period 7 islands in purple and the singled

out structure in orange. The orbits colored in bright blue in Figure 3.7 are further

distinguished in Figure 3.9. There, the horse-shoe is colored in blue, the inner end of

the horse-shoe in green, the 3-tower in bright blue and the top tower in black. From

these �gures and Figure 3.10 also a rough spatial relation between the arrangement of

the points in frequency space and their corresponding tori in the phase space section

becomes apparent. For instance the gaps in frequency space between the central island

and the outer structures, which are probably caused by the resonances 3 : 1 : 1, 0 : 7 : 1,

and −1 : 2 : 0, as shown in Figure 3.7(a), are also found in the phase space section, as

shown in Figure 3.7(b). In this sense gaps in the arrangement of the regular tori in the

4D phase space can be related to resonances.
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(a) Frequency space
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Figure 3.7: Comparison of regular orbits in frequency and phase space. The col-

ors highlight different groups of orbits in (a) and (b). (a) The manually corrected

frequencies of the regular orbits, same as in Figure 3.6(b). The big frame and the

insets correspond to the boxes in Figure 3.6(b) according to their labels. The small

letters (i),(ii),(iii) label the main groups of orbits, each considered separately in Fig-

ure 3.8. (b) The regular orbits are shown in the phase-space section |𝑝2| < 𝜖 (see

Section 3.1.3).
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Figure 3.8: Comparison of regular orbits located in region (i) in Figure 3.7(a) in

(a) frequency and (b, c) phase space. The labeled insets in (a) are the same as

in Figure 3.7(a). In (a,b,c) smaller subgroups are highlighted with different colors.

For comparision all other orbits (red) are inserted, but for better display of the

higlighted structures in (b) and (c) only every 50th point is shown. In (b) and (c)

different structures of the blue orbits of Figure 3.7(b) are magnified. In (b) only the

green orbits of (a) are shown and in (c) only the blue orbits of (a) are shown. In (a)

and (b) the central elliptic–elliptic fixed point, see Section 2.7.2, is indicated (purple

point).
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Figure 3.9: Comparison of regular orbits located in region (ii) in Figure 3.7(a) in

(a) frequency and (b) phase space. The labeled insets in (a) are the same as in

Figure 3.7(a). In (a,b) smaller subgroups are highlighted with different colors. For

comparision all other orbits (red) are inserted, but for better display of the higlighted

structures in (b) only every 50th point is shown. In (b) the bright blue orbits of

Figure 3.7(b) are magnified.
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Figure 3.10: Comparison of regular orbits located in region (iii) in Figure 3.7(a)

in (a) frequency and (b) phase space. The labeled insets in (a) are the same as

in Figure 3.7(a). In (a,b) smaller subgroups are highlighted with different colors.

For comparision all other orbits (red) are inserted, but for better display of the

higlighted structures in (b) only every 50th point is shown. In (b) the green orbits

of Figure 3.7(b) are magnified.
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The area-like structures in frequency space seem to have always a sharp edge, which

looks like a line-shaped border the frequencies converge to, whereas the density of

the points decreases irregularly going away from these borders. This property can be

explained by looking at the phase-space section. The deformed ellipses representing the

regular orbits in the phase-space section are stacked on top of each other, such that the

centers of the ellipses form lines in the section. This is well visible for the top tower,

colored in black, and the 3-tower, colored in bright blue, in Figure 3.9(b) and for the part

of the outer ring, colored in gray, in Figure 3.10(b). Assuming a set of tori approaching

one of these lines, consequently looking like ellipses with decreasing radius in the phase-

space section, the frequencies of these tori form some line in frequency space. This line

has to end at the innermost torus, which is just an ellipse with radius zero, a point.

In the central island two of these borders meet forming an apex which points to the

frequencies corresponding to the eigenvalues of the elliptic�elliptic �xed point at the

center of the phase space, 𝜔/2π = (0.306315, 0.121726) as calculated in Section 2.7.2.

In Figures 3.8(a) and 3.8(b) the �xed point is indicated by a purple point. Summing

up all these facts and taking into account, that the line-shaped borders represent 2D

manifolds, as noted above, these lines are expected to correspond to the center manifold.

It should be emphasized, that the line-shaped borders emanating from the �xed point

in frequency space seem to be continued after the resonance gaps, suggesting that in

fact these lines majorly govern the structure of the regular tori in frequency space and

thus also in phase space. Both of these conjectures are proved in chapter 4, especially

by the results in Section 4.3.

Despite the spatial relation between frequency and phase space found above, the

horse-shoe deviates in 𝜔2 from the expected position in frequency space. This is visible

in Figure 3.9(a), where the blue points representing the horse-shoe are expected to be

close to the green points, representing the inner end of the horse-shoe. Even considering

a di�erent set of independent frequencies for the points of the horse-shoe, as discussed

in Section 3.2.2, does not restore a meaningful spatial relation. Although choosing

𝜔 = (𝜔1,−4 · 𝜔1 + 𝜔2) maps the horse-shoe, colored blue, in the frequency area of the

inner end of the horse-shoe, colored green, the position of the edge of the horse-shoe

still seems to be wrong. Also the frequencies of the singled out structure, colored orange

in Figure 3.7(b), have not been understood. On the contrary, the other points on the

resonances, such as the period 7 islands with the resonance 0 : 7 : 1, and the 3-tower

with the resonance −1 : 3 : 0 can be explained. The resonance 0 : 7 : 1 forms 2 sets of

regular islands around elliptic�elliptic �xed points of period 7, as can be demonstrated

by the method of color and rotation, see Section 3.1.2. The frequency 𝜔1 of points of

the period 7 islands, which is not 1/7 · 2π in Figure 3.7(a), is therefore according to
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Section 3.2.2 wrong. The orbits of the 3-tower are probably in the vicinity of an elliptic

�xed line with a single-coupled resonance of −1 : 3 : 0. Such a �xed line, on which the

dominant frequency 𝜔1 and the other 𝜔2 have a ratio of |𝜔1 : 𝜔2| = 1 : 3, intersects a

phase-space section at two times three points, where always three points are close to

each other. That is, the torus of the �xed line intersects the phase-space section at two

spots and the �xed line appears at each spot three times due to its frequency ratio.

These three close by intersections are also seen in Figure 3.9(b) for the 3-tower, which

has the characteristic structure of three towers.

Apart from the above mentioned exceptions the spatial relation between frequency

space and phase space allows for understanding the principle arrangement of the regular

tori in phase space by looking at their representation in frequency space. In this sense,

the frequency analysis serves as a projection of the 4D phase space to a 2D space

conserving the relevant information about the structure of the phase space.





4 Global structure of regular tori in

4D phase space

According to Section 2.4.1, the regular tori of a 2D map form a hierarchical structure

of regular islands. On the contrary, much less is known about the structure of the tori

of higher dimensional maps. These tori are found to be embedded in spheres, forming

regular islands in which the Arnold di�usion is exceedingly slow [10]. But above that a

large variety of lower dimensional, invariant manifolds exists in 4D maps.

In this section the global structure of the regular tori in a 4D phase space is revealed.

Based on the observations made in Section 3.3 a concept is devised in Section 4.1 by

which 2D tori can be assigned to 1D tori. An algorithm for �nding these so-called

central 1D tori is developed in Section 4.2. Finally, in Section 4.3 the central 1D tori

are found to compose global 2D invariant manifolds, which act as a skeleton of the

regular structures. The manifolds are identi�ed as center manifolds and remains of

families of resonant tori.

4.1 Concept of central 1D tori

The frequency-space representation of regular tori of the strongly coupled 4D map 𝐹SC in

Figure 3.7(a) and its discussion in Section 3.3 suggest a great importance of the central

elliptic�elliptic �xed point and the two line-shaped barriers, which emanate from it, for

the global arrangement of the frequency space. As pointed out in Section 3.3 the ellipses

representing the 2D regular tori seem to be stacked on top of each other, such that the

centers of the ellipses form 1D lines in the section. Therefore, these are denoted as center

lines. Metaphorically speaking the ellipses look like they are stringed on a lace. The

ellipses that are closer to such an imaginary center line seem to have a smaller radius.

This trend can be extrapolated by conceiving regular tori appearing in the section as

ellipses with even smaller radius. This conception converges to tori appearing as points

on the center line. The corresponding tori in phase space are consequently expected to

be 1D �xed lines rather than 2D surfaces. This means that the center lines in the phase-

space section represent 2D manifolds consisting of 1D tori. There are only two related
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families of objects in phase space, namely the 1D �xed lines, resulting from rank one

resonances as described by Todesco [11] and center manifolds, which are invariant 2D

manifolds attached to elliptic �xed points. For instance the center lines of the central

island intersect at the central elliptic�elliptic �xed point, thus are suspected to be two

center manifolds of this �xed point. However, such a relation to some periodic orbit is

not possible for all center lines, e.g., no �xed point is found on the center line of the

outer ring.

In order to clarify the raised questions about the origin of the 1D �xed lines the

concept of the central 1D tori is devised. The mentioned thought experiment takes

place in a phase-space section. From examining the regular tori in di�erent sections and

projections the following idea emerges, which is the equivalent of the thought experiment

in the complete phase space. The idea is, that every 2D torus contains other tori. Of

course the 2D torus can not surround a part of the 4D phase space in the conventional

sense. In this context containing refers to a 3D projection of the phase space, where

the torus looks like a closed tube. In this sense, another torus with almost the same

shape but slightly less size is contained in the �rst one. The same applies to this

smaller torus. This idea is for example illustrated in Figure 4.1. Thus, in the 3D

projection every tori can be thought of a tube containing in�nitely many smaller tubes.

The relation of containment holds for every chosen 3D projection of the 4D phase

space. Conversely, most 2D tori are in this sense contained in another torus of slightly

bigger size, supposedly up to some �nal torus, which is just surrounded by chaos. The

explicit character of this transition is neglected here, since the focus lies rather on the

innermost tori. The innermost tori are consequently lines, denoted here as central 1D

tori. Considering a family of such central 1D lines, each line being surrounded by layers

of 2D tori, the combination of all such families results in the complete set of the regular

tori. Thus the global structure of the regular tori is based on central 1D tori and their

relation to each other.

The central 1D tori have to be acquired numerically, in order to manifest their ex-

istence and importance as well as their relation to each other. Such tori are unlikely

to be found by a grid-based search algorithm, due to the low dimensionality, which

explains their absence in the presented �gures of the phase-space sections. At the same

time, as it is discussed in the previous sections about frequency analysis, such tori can

not be mapped numerically to the frequency space since they have only one measur-

able frequency. As tori get closer to the central 1D torus the evaluation of the second

frequency, belonging to the mapping in the direction that vanishes for the central 1D

torus, becomes harder and �nally impossible. However, both frequencies should con-

verge, when approaching a central 1D torus. Therefore, it is suggested in Section 3.3
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that the barriers in frequency space correspond to the position of the central 1D tori.

4.2 Finding central 1D tori

Based on the geometry of the tori conjectured in Section 4.1 an algorithm for �nding

some of the central 1D tori in a phase space is developed. The algorithm uses an orbit

on a 2D torus to �nd an orbit on a 2D torus, which is contained by the �rst one.

This procedure converges to the corresponding central 1D torus. Thus, applying the

algorithm to di�erent sets of 2D tori, e.g., obtained from a grid-based search algorithm,

results in arbitrary many central 1D tori for every desired region of phase space.

4.2.1 Inverse action–angle mapping

Consider a torus of an integrable system whose frequencies 𝜔 were obtained by frequency

analysis of an orbit 𝑥(𝑡) on the torus as described in Section 3.2.3. The initial point 𝑥0 of

the orbit can be expressed in action�angle coordinates as (𝐼0, Θ0), see, e.g., Section 2.3.

Accordingly, the orbit 𝑥(𝑡) resulting from mapping the initial point 𝑥0 can be expressed

in terms of the action�angle coordinates (𝐼(𝑡), Θ(𝑡)), see Eq. (2.4),

𝐼(𝑡) = 𝐼0 ,

Θ(𝑡) = Θ0 + 𝜔𝑡 ,

which, ignoring the action, leads to a relative angle △Θ

△Θ(𝑡) ≡ Θ(𝑡) −Θ0 = 𝜔𝑡 (4.1)

that stands for a coordinate on the torus relative to the initial point 𝑥0. Eq. (4.1)

formulates △Θ as a function of time 𝑡. However, this relation can be reversed in the

following sense.

In the generic case, meaning incommensurable frequencies 𝜔, the vector △Θ gets

arbitrarily close to every point on the 2D torus T2, see Section 2.3. Explicitly, ∀𝜃 ∈
T2, 𝜖 > 0, ∃ 𝑡 ∈ Z:

||𝜃 −△Θ(𝑡)|| Eq. (4.1)= ||𝜃 − 𝜔𝑡|| < 𝜖 (4.2)

with ||·|| denoting the Euclidean norm on T2 and keeping in mind that all quantities

are de�ned only on the torus T2, that is, e.g., (𝜔𝑡) actually reads (𝜔𝑡 mod 2π). Conse-

quently a function 𝑡𝑀(𝜃), which numerically approximates the inverse map of Eq. (4.1),
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can be de�ned on the domain T2 with a parameter 𝑀 ∈ N by

𝐷𝑀 ≡ Z ∩ (−𝑀,𝑀)

𝑡𝑀(𝜃) ≡ min{𝑡 ∈ 𝐷𝑀 : ||𝜃 − 𝜔𝑡|| = min
𝑡′∈𝐷𝑀

||𝜃 − 𝜔𝑡′||} . (4.3)

The inverse map of Eq. (4.1), formally denoted by 𝑡(𝜃), is then numerically approxi-

mated by

𝑡𝑀(𝜃)
𝑀≫1−−−→ 𝑡(𝜃) . (4.4)

Note that the outermost minimum in Eq. (4.3) is merely introduced to ensure the

right-uniqueness of the inverse map. Furthermore, numerically refers to the fact that

concerning the numerics, the resulting 𝜔 · 𝑡𝑀(𝜃) gets su�ciently close to 𝜃 = 𝜔 · 𝑡(𝜃),

whereas the existence of the mathematical limit of Eq. (4.4) is not guaranteed. Unless

𝜃 is an element of the set {𝜔 · 𝑡}𝑡∈Z, the value of 𝑡𝑀(𝜃) in Eq. (4.4) goes to in�nity

for 𝑀 → ∞, due to the the fact, that this set is dense on the torus T2, provided 𝜔 is

incommensurable.Nevertheless, since only a �nite accuracy 𝜖min > 0 is needed for the

numerics, a �nite 𝑡 < ∞ can be found ful�lling Eq. (4.2) for this 𝜖min.

Given an initial point 𝑥0 on a torus and angles 𝜃, the above algorithm allows for

calculating a point 𝑥′
0 in phase space, which lies on the same torus as 𝑥0 but is located

at angles di�ering by 𝜃 from the angles of 𝑥0. The most important aspect of this

algorithm is that the knowledge of the action�angle coordinates is not needed. Instead

of determining the transformation to action�angle coordinates, just a natural number

𝑡(𝜃) is obtained by the numerical implementation of Eq. (4.3) and Eq. (4.4), the initial

point 𝑥0 is mapped 𝑡(𝜃) times and the resulting point in phase space is in some vicinity

of the desired 𝑥′
0.

Some applications are imaginable for the numerical inverse 𝑡(𝜃) described above. For

instance the local base vectors {𝑒Θ𝑖
(Θ0, 𝐼0)}𝑖=1...𝑁 of the angles and consequently the

dual vector space of the local base vectors {𝑒𝐼𝑖(Θ0, 𝐼0)}𝑖=1...𝑁 of the actions could be

approximated using 𝜃(𝑖) ≡ 𝜖 · 𝑒Θ𝑖
with some small 𝜖 > 0. From the initial point 𝑥0

mapped 𝑡(𝜃(𝑖)) times, leading to the picture 𝑥
(𝑖)
0 , it follows then

𝑒Θ𝑖
(Θ0, 𝐼0) =

𝑥
(𝑖)
0 − 𝑥0

𝜖
.

Concerning the problems discussed in Section 3.2.2, 𝑡(𝜃) may be also used to check the

results of the frequency analysis for an orbit on a torus. As is explained in Section 3.2.2,

in some cases the numerical analysis of the fundamental frequencies returns a �nite set
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of 𝑀 > 𝑁 possible frequencies {𝜔𝑖}𝑖=1...𝑀 of which 𝑁 are the correct fundamental

frequencies, where 𝑁 is the number of degrees of freedom. When applying the inverse

action�angle mapping with the setting 𝜃 = 0 and 𝑡(𝜃) ̸= 0 for the correct 𝑁 frequencies

the accordingly mapped point 𝑥′
0 is in the vicinity of the initial point 𝑥0, whereas for

any other subset of frequencies the point 𝑥′
0 should di�er much from 𝑥0. Therefore,

considering all possible 𝑁 -tuple of the frequencies {𝜔𝑖}𝑖=1...𝑀 , looking for the smallest

deviation of 𝑥′
0 from 𝑥0, should lead to the wanted fundamental frequencies.

The numerical di�culties and e�ectiveness of such applications are not particularly

discussed here, but may be inferred from the outline of the method designed to �nd the

central 1D torus in Section 4.2.2 and especially Section 4.2.3.

4.2.2 Algorithm

Consider a given initial point 𝑥0 on a 2D torus, whose frequencies 𝜔 are obtained by

frequency analysis. Such a torus is presented in Figure 4.1(a) by a 3D projection, see

Section 3.1.2, where 𝑥0 is indicated by a red point. The torus looks like the deformed

version of a long, thin ring torus with radii 𝑅Θ1 > 𝑅Θ2 . Consequently, the change of Θ1,

due to the mapping, e.g., as formulated in Eq. (4.1), is spatially more relevant than the

change of Θ2 and therefore the dominant frequency 𝜔1 belongs to the mapping of Θ1,

whereas the other frequency 𝜔2 belongs to Θ2. Hence using the numerical inverse 𝑡(𝜃)

developed in Section 4.2.1 with 𝜃1 = 0 and 𝜃2 = π for the initial point 𝑥0 a point 𝑥′
0 is

computed, that lies geometrically on the opposite site of the torus with respect to Θ2,

but at the same Θ1. In the close-ups on the example torus in Figures 4.1(b) and 4.1(c)

this is well visible, where 𝑥0 and 𝑥′
0 are indicated by the red point and the blue point

on the outermost torus. The line from 𝑥0 to 𝑥′
0 is completely contained by the torus in

every 3D projection of the system and is depicted in Figures 4.1(b) and 4.1(c) as the

black line between the red point and the blue point. The point 𝑥1 half way between

the opposing points

𝑥1 ≡
𝑥′
0 − 𝑥0

2
+ 𝑥0

lies on a torus, that is closer to the central 1D torus, according to Section 4.1. Such

a 𝑥1 is indicated by another red point in the middle of the mentioned black line in

Figures 4.1(b) and 4.1(c). Also the torus 𝑥1 lies on is shown there, looking like a

tube within the outer torus. The described procedure can be applied again to this

new initial point 𝑥1, as it is demonstrated in Figure 4.1(d). Thus the central 1D torus

is approached iteratively. This is well illustrated for the example torus in the plots
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of Figure 4.1. In this case the central 1D torus is approximated very well in a few

iterations. The convergence is con�rmed by the fact, that the last red and blue points

lie almost on one line in Figure 4.1(d).

The outlined algorithm works at least for tori ful�lling the above criterion 𝑅Θ1 > 𝑅Θ2 .

In these cases the dominant frequency 𝜔1 undoubtedly belongs to Θ1. The algorithm

should also work for the case that the radii 𝑅Θ1 and 𝑅Θ2 get close to each other, e.g.,

for spindle tori, although the correspondence between the angles Θ and the frequencies

𝜔 is not expected to work as simple as assumed above. Additionally, the principle

of the method may work for tori with other dimensionality. For instance in a 2D

Hamiltonian system the algorithm would converge from a 1D torus of a regular island

to the corresponding elliptic �xed point.

4.2.3 Discussion of pitfalls

There are some numerical obstacles for both methods, the mere numerical inverse 𝑡(𝜃)

developed in Section 4.2.1, and the algorithm for �nding the central 1D tori. Neverthe-

less, the results obtained by using them, e.g., as presented in Section 4.3, prove their

usefulness. It also has to be emphasized that the methods deal with a geometric struc-

ture within a 4D space without requiring its visualization. The 3D projections are just

used here for visualizing the concept.

First of all the methods inherit the issues of the frequency analysis, which were already

discussed in Section 3.2.2. Problematic are tori of the single-uncoupled case and the

double resonant case, which split up into several disjoint parts. Regular orbits of their

elliptic surrounding might not converge to the wanted central 1D torus. This can be

overcome by using only points belonging to one of the disjoint components instead of

the whole orbit.

Likewise problematic are tori 𝑇𝑃 that remain from the perturbation of a torus 𝑇0 with

a single-coupled resonance. Such a torus 𝑇𝑃 is a �xed line around the central 1D torus

𝑇1D of the unperturbed torus 𝑇0. Thus, the algorithm converges as expected for this

torus 𝑇𝑃 to the central 1D torus 𝑇1D. On the contrary, the central 1D torus of a regular

orbit from the elliptic surrounding of the �xed line 𝑇𝑃 is 𝑇𝑃 , according to the de�nition

of the central 1D torus in Section 4.2. However, for such an orbit the frequencies of the

torus 𝑇𝑃 are obtained because these frequencies are spatially more relevant than the

frequencies of the orbit. Hence, the orbit converges to 𝑇1D rather than to 𝑇𝑃 .

But even if the correct frequencies of a torus are calculated, they are only known with

a certain accuracy, thus limiting the interval [−𝑀,𝑀 ] for the iterations 𝑡 as denoted in

Section 4.2.1 in which the numerical inverse 𝑡𝑀(𝜃) is su�ciently accurate. In�uences
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Figure 4.1: Example for the convergence to the central 1D torus from a torus of

the horse-shoe as described in the text. The tori are projected to the (𝑝1, 𝑞1, 𝑞2)-
space (see Section 3.1.2) and shown for different zooms and perspectives. The initial

points 𝑥0 (red points) and the opposing points 𝑥′
0 (blue points) on every tori as well

as (𝑥′
0 − 𝑥0) (black lines) for all iterations steps of the algorithm are shown. The

innermost points in (d) lie almost on one line, demonstrating the convergence of the

algorithm.
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of other numerical errors, e.g., rounding errors due to the mapping, can be neglected

compared to the error of the frequency analysis as mentioned in Section 3.2.3. Addi-

tionally, the evaluation of the second frequency 𝜔2 becomes harder as the obtained tori

approach the central 1D torus, since the second radius 𝑅Θ2 vanishes. Based on the

assumed convergence of the frequencies mentioned in Section 4.1, the frequency 𝜔2 is

kept constant from some iteration on and used for all following tori. Therefore, only

the dominant frequency 𝜔1 is updated.

In order to guarantee numerical convergence towards the desired central 1D torus, it

is su�cient that the initial point 𝑥1 for the next iteration is contained in the previous

torus by means of 3D projections. Therefore, it is more important to get a point

with the right △Θ1 = 0 than with the right △Θ2 = π, keeping in mind that the

corresponding radii ful�ll typically 𝑅Θ1 > 𝑅Θ2 . If △Θ1 is o�, the vector (𝑥′
0 − 𝑥0)

might not be completely within the torus. In contrast to that, a wrong △Θ2 leads to a

slow convergence at most. Thus the norm used in the term ||𝜃 − 𝜔𝑡|| in Eq. (4.3) has

to weight the angles accordingly. Taking into account this inconvenient weighting and

poor convergence of the second most important frequency 𝜔2, a slight variation of the

method can be reasonable. Instead of �nding the opposite point 𝑥′
0, several points at

the same dominant angle △Θ1 = 0 can be found, regardless of the second angle △Θ2.

The next initial point 𝑥1 can be de�ned as their mean, based on the fact that a point

𝑥1 only has to lie within the previous torus by means of 3D projections. This variation

is already successfully used by Onken [62].

4.3 Center manifolds

The method described in Section 4.2 is applied to the tori, which are shown in Sec-

tion 3.3. For each torus the procedure is run 15 times, with the errors of the angles

weighted |𝜔1 · 𝑡(0,π)| : |𝜔2 · 𝑡(0,π)−π| = 1 : 10. Not converged tori are manually sorted

out. Figure 4.2 shows the resulting 1D tori. They are visualized by means of a phase-

space section in Figure 4.2(a) together with regular orbits known from Section 3.3. In

Figure 4.2(b) the 1D tori are shown by a projection. The latter plot also contains the

points of the 1D tori that are visible in the phase-space section in Figure 4.2(a), as well

as four periodic orbits.

The intersection points of the central 1D tori in Figure 4.2(a) indicate the expected

central lines, forming a coarse skeleton for the regular tori shown in red. Some center

lines are missing, e.g., for the 3-tower. This is due to the problems of the frequency

analysis, mentioned in Section 4.2.3. In Onken [62] the center lines for the 3-tower are

found by dividing the obtained dominant frequency by three, as is suggested by the
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(a) Phase space section, |𝑝2| < 𝜖

−0.24
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Figure 4.2: Central 1D tori in the phase-space section |𝑝2| < 𝜖 (see Section 3.1.3)

and projected to the (𝑝1, 𝑞1, 𝑞2)-space (see Section 3.1.2). (a) The phase-space section
shows the central 1D tori (black points) and regular tori (red). (b) For comparison in

the projection the intersection points (black) of the central 1D tori with the phase-

space section are depicted. The red and green spheres indicate elliptic–elliptic and

elliptic–hyperbolic periodic orbits of period seven. They are obtained by a Newton-

Raphson method based search for fixed points. They form a chain of 14 elliptic-elliptic

and elliptic-hyperbolic points on each center manifold.
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discussion in Section 3.2.2. The central lines within the central island intersect at the

central elliptic�elliptic �xed point. It has to be pointed out, that these central lines can

even be continued across resonances. This is visible above and below the central island.

These gaps correspond exactly to the gaps in frequency space discussed in Section 3.3.

At the resonances disrupting the center manifold the center lines look like a function

having a pole of odd order. This behavior is observable at all major resonances. This

continuation of the center lines across resonances is also visible in the frequency space

in Figure 3.7(a). There the line-shaped edges also extent beyond resonance gaps.

The 3D projection of the central 1D tori in Figure 4.2(b) indicates the expected

2D manifolds. The two large manifolds in the vicinity of the central elliptic�elliptic

�xed point are tangential to the elliptic eigenspaces of this �xed point (not shown in

Figure 4.2(b)). This suggests that these manifolds, each consisting of a family of central

1D tori, are actually the center manifolds of this �xed point. Therefore, the algorithm for

�nding the central 1D tori can be used as a method for computing the center manifolds

of purely elliptic �xed points of a system. This is even possible without knowing the

�xed points.

Furthermore, the extension of the manifolds across resonances suggests that the center

manifolds also exist beyond the resonance gaps. At resonances they break up in a way,

that looks like a 2D version of a pole with odd order. This means that all tori of the

structures denoted in Section 3.3 as central island, the horse-shoe, the inner end of the

horse-shoe, the top tower and the outer ring are directly related to the center manifolds

of the elliptic�elliptic �xed point in a way that is comparable to the relation between

tori of a regular island and its elliptic �xed point in a 2D system.

There are features disturbing the center manifolds. One are the period 7 islands,

which are the result of a double resonance. Another one are the center lines of the

3-tower as a family of elliptic �xed lines remaining from all tori with the same single-

coupled resonance, probably some 3 : 1 resonance. Apart from these two cases only the

singled out structure is left in the understanding of the global structure of the regular

tori. Further studies on the global structure of phase space and the central 1D tori are

done by Onken [62].

Note that the method presented here is an alternative to the otherwise used algebraic

approximation of the center manifolds, as mentioned in Section 2.5.2. The disadvantage

of such an algebraic approach is that it only works up to a major resonance, where the

pole like behavior prevents further convergence beyond the resonance.

In Figure 4.2(b) also four periodic orbits are shown. They seem to form lines of

elliptic�hyperbolic and elliptic�elliptic periodic orbits on the center manifolds. This

indicates that the 4D map acts on the 2D invariant manifolds like a 2D symplectic map.
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This is expected for the center manifolds as is mentioned in Section 2.5.2, but is not

clear for the here considered disturbed center manifolds broken by resonances.

In conclusion, the global arrangement of the regular tori in 4D phase space is majorly

determined by families of central 1D tori, representing either center manifolds or fam-

ilies of elliptic �xed lines remaining from tori with the same single-coupled resonance.

All other tori form layers around these central 1D tori, as explained in Section 4.1 and

demonstrated in Figure 4.1 up to some outer tori. The character of the transition from

the outer tori to the chaotic sea is not studied in this thesis, but further investigations

about the structure can be found in Onken [62]. The phase-space structure is con�rmed

in frequency space, as described in Section 3.3 and shown in Figure 3.7. There the fami-

lies of central 1D tori are indicated by line-shaped barriers, with clouds of regular tori on

just one side. Greater distance of a torus from its central 1D tori corresponds to greater

distance from the corresponding barrier in frequency space. Based on this insight, the

position of trapped orbits as investigated in chapter 5, especially in Section 5.2, can be

understood.





5 Trapping in generic 4D maps

In this chapter the trapping in generic 4D symplectic maps is investigated. As mentioned

in Section 2.7.2 the focus lies on the strongly coupled map 𝐹SC. However, the results

for the weakly coupled system 𝐹WC can be found in appendix A.2.

First the statistics of Poincaré recurrences 𝑃 (𝑡) are discussed in Section 5.1. Then,

trapped orbits with large Poincaré recurrences 𝑡 are examined in phase space in Sec-

tion 5.2. Based on these trapped orbits a sticky region can be identi�ed in frequency

space in Section 5.3. Finally, the transport within the sticky region is analyzed in

Section 5.4.

5.1 Poincaré recurrence statistics

In order to investigate the trapping in 4D maps, �rst of all the Poincaré recurrence statis-

tics, see Section 2.2, are determined for the given systems 𝐹SC and 𝐹2D, see Eqs. (2.13)

and (2.11) respectively.

The region of initial points Γ needed for the Poincaré recurrence statistics should

ful�ll two prerequisites. On the one hand Γ should lie far away from the regular region.

This ensures that all orbits are clearly started outside of a sticky region enveloping the

regular tori, which governs the trapping mechanism. On the other hand Γ should be a

large subset of phase space, since this reduces the average time needed by untrapped

orbits to return to Γ. As these orbits are of no interest to this investigation but their

consideration is numerically costly [20], this makes the calculations more e�cient. Also

in case of a large region Γ, trapped orbits that have left the sticky region have a smaller

chance to be trapped again. So it can be assumed that the observed e�ects result merely

from the properties of the sticky region and not from repeated trapping in the sticky

region.

Therefore Γ is chosen consistently for all considered maps to be

Γ ≡ {𝑥 ∈ 𝑈 : 𝑥𝑁+1 < 0.1} , (5.1)

that is all points of the phase space, whose �rst position variable is smaller than 0.1.
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This means 𝑞1 < 0.1 for the 4D map 𝐹SC and 𝑞 < 0.1 for the 2D 𝐹2D map. The condition

that Γ lies completely in the chaotic sea is checked via visualizations of the phase space.

For 𝐹SC the visualization methods introduced in Section 3.1 are used. For both maps

Γ covers 10% of phase space.

About 1011 initial points distributed on a uniform grid on Γ are used for the 4D maps1

and the 2D map 𝐹2D
2. Each initial point is iterated until its �rst return to Γ.

Figures 5.1(a) and 5.1(b) show the distributions of the Poincaré recurrences 𝑃 (𝑡) for

the strongly coupled 4D map 𝐹SC and the 2D map 𝐹2D respectively. In both cases a

power-law behavior 𝑃 (𝑡) ∼ 𝑡−𝛾 with similar exponent 𝛾 is observed for large times 𝑡.

According to the literature, see Section 2.2, 𝛾 is expected to be smaller for the 4D map

than for the 2D map. However, Shepelyansky observes an increase of 𝛾 for increasing

perturbation of a system [32]. In this context, the large value of 𝛾 might be due to the

strong perturbation of 𝐹SC.

For 𝐹2D oscillations of 𝑃 (𝑡) in logarithmic scale are visible. This deviation from the

power-law in the 2D case is accounted for in Section 2.4.2. Shepelyansky observes such

oscillations also in higher dimensional systems, but points out that their amplitude

is signi�cantly smaller than in the 2D case [32]. Unlike there, such oscillations are

completely absent for 𝐹SC. This might be due to the strong perturbation of 𝐹SC.

Finally, despite the fact that the regular region in the 4D case takes up a smaller

percentage of phase space than in the 2D case, see Section 2.7, the number of orbits,

which are trapped for very large times, is of the same magnitude.

Thus, it can be concluded, that the used 4D map 𝐹SC exhibits the expected power-law

behavior, which results from orbits with very large return times, i.e., trapped orbits.

1(501 · 1001)2 initial points
2For every point of a coarse grid of 102× 1001 points in the (𝑝2, 𝑞2)-plane a finer grid of 1001× 1001
points on the (𝑝1, (𝑞1 < 0.1))-plane is set up. According to Eq. (5.1) this is a grid on Γ.
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(a) 4D map 𝐹SC, 𝛾fit = 1.62

∼ t−1.6

K = 2.5

10−12

10−8

10−4

100

100 102 104 106 108t

P (t)

(b) 2D map 𝐹2D, 𝛾fit = 1.57

Figure 5.1: Dependence of statistics of Poincaré recurrences 𝑃 (𝑡) on time 𝑡 for

(a) the 4D map 𝐹SC, see Eq. (2.13), and (b) the 2D map 𝐹2D, see Eq. (2.11). For

comparison the gray dashed lines represent a power-law 𝑃 (𝑡) ∼ 𝑡−𝛾 , with 𝛾 as labeled.

The captions of (a) and (b) contain the exponent 𝛾fit obtained by fitting. The insets

sketch the position of the initial region Γ (blue box) with regular tori (red) and a

trapped orbit (blue). The insets show (a) a phase-space section |𝑝2| < 10−5, see

Section 3.1 and (b) the 2D phase space.
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5.2 Observations of trapping in phase space

In order to reveal the mechanism of trapping in the 4D case further investigations are

required. Therefore more trapped orbits are computed in the same manner as described

in Section 5.1 using higher grid resolutions. For the strongly coupled map 𝐹SC about

1.9 · 1012 initial points are iterated until their �rst return. About 103 of these initial

points lead to orbits with return times 𝑇 > 106. The following results are based on this

collection of trapped orbits.

In this section �rst of all the trapped orbits are depicted in phase space, using phase-

space sections as described in Section 3.1.3. These images serve as a visual illustration

of the trapping.

5.2.1 Gallery of trapped orbits

The collection of trapped orbits, can be classi�ed into distinct groups according to the

regular tori at which the orbits are trapped. For this observation the trapped orbits

are depicted in 3D phase-space sections |𝑝2| < 𝜖 with 𝜖 = 10−4, see the blue points in

Figures 5.2 and 5.3. Additionally, the regular orbits presented in Section 3.3 are shown

with 𝜖 = 10−5.

According to these plots the orbits get only trapped in few regions close to the groups

of regular tori discussed in Section 3.3. The orbits are trapped outside of the regular

islands formed by these groups of regular tori. Consequently, the orbits are trapped

far away from the 2D manifolds identi�ed in Section 4.3. Furthermore, there is no

indication for chaotic points penetrating the regular islands. This is consistent with

the observations of reference [10] for weakly coupled standard maps. There the authors

conclude that although chaotic orbits can actually access every region of the phase

space via the Arnold web, the Arnold di�usion within a regular island is nonexistent

or exceedingly slow. Finally, in Figures 5.2 and 5.3 the regions occupied by the chaotic

orbits mimic roughly the shape of the regular orbits close to them.

5.2.2 Close up on gallery

The general observations of Section 5.2.1 for the di�erent classes of trapped orbits are

now completed by a detailed look on one generic representative, namely the orbit shown

in Figure 5.2(d). This orbit is trapped around the structure of the horse-shoe.

In order to discuss the spatial relation between the trapped orbit and the regular tori

as visible in the phase-space section, locally de�ned directions have to be introduced.

These directions are sketched in Figure 5.4, where four tori are shown as red ellipses with
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(e) 𝑇 ≈ 43 · 106, period 7 islands

Figure 5.2: Examples for trapped orbits of the 4D map 𝐹SC, see Eq. (2.13). Shown
is the section |𝑝2| < 𝜖, with regular tori (red, 𝜖 = 10−5) and an example of a trapped

orbit (blue, 𝜖 = 10−4), that was additionally mapped 2 · 107 iterations backward to

illustrate of the chaotic sea. The captions contain the time 𝑇 till the first return and

the structure at which the orbit is trapped, according to the notation introduced in

Section 3.3. (see also Figure 5.3)
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(e) 𝑇 ≈ 106, central island

Figure 5.3: Examples for trapped orbits of the 4D map 𝐹SC, see Eq. (2.13). Shown
is the section |𝑝2| < 𝜖, with regular tori (red, 𝜖 = 10−5) and an example of a trapped

orbit (blue, 𝜖 = 10−4), that was additionally mapped 2 · 107 iterations backward to

illustrate of the chaotic sea. The captions contain the time 𝑇 till the first return and

the structure at which the orbit is trapped, according to the notation introduced in

Section 3.3. (see also Figure 5.2)
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Figure 5.4: Definition of local directions in phase-space section. Four regular tori

(red ellipses) with their center line (gray line), see Section 4.1, are schematically

shown in the phase-space section. At one torus the directions along the tori (𝑥 arrow),

perpendicular to the tori (𝑦 arrow), and around the tori (𝜑 arrow) are indicated.

their gray center line. Firstly, there is the direction 𝜑 around the tori, following the red

lines representing the regular tori. Secondly, there is the direction 𝑥 along the tori, which

is perpendicular to the lines of the tori, pointing from one torus to its next neighbor.

Finally, there is the direction 𝑦 perpendicular to the tori, pointing away or towards the

center line and being perpendicular to the other two directions. Considering a particular

torus and its action�angle coordinates, the direction around the tori corresponds to the

local base vectors of the angles {𝑒Θ𝑖
(Θ, 𝐼)}𝑖=1,2 on the torus, that is 𝜑 = 𝜑(Θ1,Θ2).

Note that these two directions appear as one in the phase-space section, as seen in

Figure 3.3. Consequently, the other two directions are linear combinations of the local

base vectors {𝑒𝐼𝑖(Θ, 𝐼)}𝑖=1,2 of the actions, that is 𝑥 = 𝑥(𝐼1, 𝐼2) and 𝑦 = 𝑦(𝐼1, 𝐼2). The

following discussions always refer to the introduced directions.

Figure 5.5(a) shows a close-up of the upper horse-shoe with the chosen trapped orbit.

The trapped orbit is located in a thin layer wrapping around the horse-shoe. Thin

refers to the extension in the direction perpendicular to the tori, whereas the extension

along the tori is much bigger. In fact the trapped orbit is con�ned to such a thin layer,

that it looks like a 2D object in the section. According to the discussion of dimensions

in the phase-space section, see Section 3.1.3, the orbit is expected to be con�ned to

a 3D region of the 4D phase space. The other examples in Figures 5.2 and 5.3 share

this property, some of them even looking like a 1D object in the section of the phase

space, see e.g., Figure 5.3(d)), which would result from a 2D object in the phase space.

This is surprising, since in a 2D phase space chaotic orbits are trapped in 2D areas

between partial barriers, see e.g., Figure 5.5(c), so the dimension of the trapped orbits
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(c) Trapped orbit of the 2D map 𝐹2D colored by time 𝑡

Figure 5.5: Close-up on the trapped orbit shown in Figure 5.2(d). (a) and (b) show

a phase space section with parameters as in Figure 5.2, regular tori (red) and the

trapped orbit (blue in (a) and colored according to the time 𝑡 of the points in (b)).

For comparison the trapped orbit from Figure 2.1 of the 2D map 𝐹2D, colored in the

same manner, is opposed in (c)
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is expected to match the dimension of phase space. In order to quantify this observation

an analysis of the fractal dimensions of the orbits is presented in appendix A.1, which

concludes that the trapped orbits are at least very con�ned in one dimension.

For the next step of the qualitative analysis the points of the trapped orbit shown

in Figure 5.5(a) are colored according to their time 𝑡, as mentioned in Section 3.1.3.

The result is depicted in Figure 5.5(b). The di�erent colors form fairly separated bands

in the thin layer in which the trapped orbit is located. Note that if the orbit was

mapped randomly within the thin layer all colors would appear to be mixed. The

bands are aligned around the horse-shoe and match roughly the shape of the red lines

of the regular tori. Also considering the proximity to the regular tori, this suggests

that the mapping of the orbit around the tori mimics the mapping on the regular

tori closest to the orbit. The fact that the colors of the bands are separated along

the tori means that the trapped orbit propagates slower in that direction than around

the tori. Accordingly, the above mentioned con�nement of the layer perpendicular

to the tori can be reinterpreted as the consequence of an even slower propagation in

that direction. Additionally, adjacent colors in phase space are also adjacent in the

colormap representing the time 𝑡. This indicates that the orbit propagates along the

tori continuously. The described arrangement of the colors of the trapped orbit in

Figure 5.5(b) completely di�ers from the structure of a trapped orbit in a hierarchy

of the 2D map 𝐹2D, as illustrated in Figure 5.5(c). There the points are distributed

around several unconnected regular islands and in each part of this hierarchy two colors

are present, indicating that the orbit visits every area twice, namely when it propagates

into the hierarchy and on its way out.

In conclusion, the di�erent character of the trapping in the 4D phase space compared

to the one in the 2D phase space suggests a di�erent trapping mechanism, which is

not based on a hierarchical structure. Instead, the trapping of orbits manifests by a

slow propagation along the tori and an even slower perpendicular to them. In order to

investigate these propagations, �rst of all the introduced directions have to be justi�ed

or rather stated more precisely. Only then the character of the propagation can be

quanti�ed regarding features like di�usion or drift. It is quite complicated to access

information about the propagation of the trapped orbit in phase space due to both

the high dimensionality of the phase space and the choice of locally de�ned directions.

Hence, the preferred space for these investigations is not the phase space but the fre-

quency space, as introduced in Section 3.2. The reason is that in the 2D frequency

space every torus is represented by a point. That is, the �fast� motion around the tori,

corresponding to the angle coordinates (Θ1,Θ2) on each torus, is no longer visualized.

Thus, only the directions along and perpendicular to the tori, which are of interest here,
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remain.

5.3 Sticky region in frequency space

In this section the sticky region of the 4D phase space is examined in frequency space.

As discussed in Sections 2.4 and 2.6, the sticky region in which orbits are trapped

corresponds to a vicinity of the boundary of the regular islands. The properties of

the sticky region and its origin is important for the understanding of the trapping

mechanism. For example the propagation of an orbit within the sticky region or how it

enters or exits the region is of interest.

Firstly, the observations of trapping in phase and frequency space are compared in

Section 5.3.1. The frequency space is found suitable for the investigation of trapped

orbits. Hence, the sticky region is presented in frequency space and its properties are

discussed in Section 5.3.2.

5.3.1 Trapped orbit in frequency space

First of all the trapping is observed in frequency space completing the examinations in

phase space in Section 5.2.2. For this purpose the orbit from Figure 5.5(b) is displayed

in frequency space. Additionally to this trapped orbit 1400 regular orbits in the horse-

shoe are calculated to relate the position of the trapped orbit to the regular tori. The

mapping to frequency space is done according to Section 3.2.3.

The results in frequency space are depicted in Figure 5.6, which nicely illustrate the

relation between phase and frequency space. The regular tori, which appear as lines

in the phase-space section, are projected to points in frequency space. Consequently

the direction around the tori, as discussed in Section 5.2.2, is no longer visible. On the

contrary, the arrangement of the colors of the trapped orbit in phase and frequency space

demonstrates that the directions along and perpendicular to the tori are still present in

the frequency space. E.g., the sequence of colors from blue to yellow along the tori in

phase space corresponds to the sequence in frequency space going approximately from

the top right to the lower left. As asserted in Section 5.2.2 on a torus these directions are

linear combinations of the local base vectors {𝑒𝐼𝑖(Θ, 𝐼)}𝑖=1,2 of the action. On a torus

the relation between these directions in phase and frequency space is even available in

form of a numerical mapping between the actions 𝐼 and frequencies 𝜔, as presented in

reference [61]. Here it is su�cient to acknowledge the occurrence of the directions along

and perpendicular to the tori in frequency space as indicated by the 𝑥 and 𝑦 direction

in Figure 5.6(b). The correspondence of the 𝑥 and 𝑦 directions in phase space and
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Figure 5.6: Trapped orbit of Figure 5.5(b), trapped around the horse-shoe, (a) in

phase space as shown in Figure 5.5(b) and (b) in frequency space. Shown are regular

tori (red) and the trapped orbit (colored according to the time 𝑡 of the points). (b)
The arrow labeled 𝑥 indicates the direction along the tori and the arrow labeled 𝑦 the
direction perpendicular to the tori. Note that according to Sections 3.3 and 4.3 the

lower edge of the regular tori in frequency space corresponds to a center manifold.
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frequency space allows for relating the transport in frequency space to the transport in

phase space.

In Figure 5.6(b), the colors of the function 𝜔(𝑡) representing the trapped orbit form

bands. They are extended much more along the tori than perpendicular to them,

thus reproducing the discussion of Figure 5.5(b). In contrast, in frequency space even a

propagation of the orbit perpendicular to the regular tori is observable. This is indicated,

e.g., by the blue or green colored bands at the right, that are clearly located at di�erent

distances from the tori. These observations con�rm that the frequency space is adequate

to examine the propagation of trapped orbits, as is suspected in Section 5.2.2.

5.3.2 Initial points in sticky region

In this section the sticky region is discussed in frequency space. This region can be

visualized by orbits, which are trapped in it. Thus, in order to investigate the sticky

region it is necessary to obtain many of such trapped orbits. For this the coordinates

of orbits, which are trapped around the horse-shoe, are slightly varied. By these initial

points are found that lie within the sticky region. These initial points are iterated

backwards and forwards in time until they either visit the region Γ de�ned in Section 5.1

or the time 𝑡 exceeds a threshold of 𝑇 = 5 ·107. The region Γ serves as an exit condition

ensuring, that the orbit escaped the sticky region.

In Figure 5.7 the results for 400 initial points, which are within the sticky region and

close to each other, is depicted. The backward and forward iteration of each initial

point are concatenated to one orbit. For each orbit the same color map indicating the

time 𝑡 with respect to the total length of the orbit is used. For comparison also the

same regular tori as in Figure 5.6(b) are depicted.

In Figure 5.7 the colored points of the trapped orbits demonstrate the extension of

the sticky region. This is due to the fact that the frequency analysis only works for

chaotic orbits close to regular tori. When a chaotic orbit exits the sticky region the

frequencies obtained for it change rapidly and become random. Besides this, the colors

of the orbits allow no statement about the average position of an orbit after a certain

time, since all the orbits shown in Figure 5.7 have di�erent lengths. Instead, the colors

demonstrate the propagation within the sticky region. Close to the regular tori the

orbits form thin, colored bands, that are stacked on top of each other. This observation

con�rms that the propagation speed along the regular tori is larger than perpendicular

to them, as already concluded in Sections 5.2.2 and 5.3.1. In contrast to these sections,

here the conclusion is based on the propagation of many trapped orbits in a large part

of the sticky region. In addition, the character of the propagation seems to alter at a
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Figure 5.7: Trapped orbits around the horse-shoe in frequency space. Each of 400

initial points, located within the sticky region and close to each other, is iterated

backward and forward in time 𝑡 and then concatenated to one trapped orbit. The

trapped orbits are shown (all colored according to the time 𝑡 of the points, as shown
for one orbit in Figure 5.6(b)) and for comparison the regular tori (red) shown in

Figure 5.6.

certain distance from the regular tori, where the shape of the bands rapidly changes

to an area with apparently isotropically distributed colors. Furthermore, the colors in

this area are majorly blue or red, indicating that for both the backward and forward

iteration the orbit escapes the sticky region through this area.

Also visible in Figure 5.7 are line-shaped disturbances, that cross the thin colored

bands, indicating the in�uence of resonances. In order to illustrate this the trapped

orbits and a selection of resonance lines are shown in Figure 5.8. Almost all relevant

resonances emanate from one of the three points with 𝜔1 = 𝜔2 = 7/24, 5/17, 13/44

such that their intersections form a periodic pattern, which is visible in the zoom box

of Figure 5.8. Such a pattern is also observed by Richter [58]. The di�erent resonances

seem to di�er in their e�ect on the orbits. Some are even visible in the regular region,

whereas others are hardly seen in the much better resolved sticky region. Most reso-

nances attract points close to them, some bend the colored bands locally. Nevertheless,
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Figure 5.8: Resonance lines as visible by the distortions of the trapped orbits in

frequency space. The resonances (orange lines) are shown and for comparison the

regular tori (red) and the trapped orbits (bright colors), also shown in Figure 5.7.

The zoom box shows a part of the characteristic pattern of the resonances with the ac-

cording coefficients, another zoom is depicted, e.g., in the first picture of Figure 5.16.

Note that almost all found resonances intersect on the resonance 1 : −1 : 0, where
𝜔1 = 𝜔2, in one of the three points 7/24, 5/17, 13/44.
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the bands exist beyond the resonance lines, thus orbits propagate across them. This

in�uence of the resonances agrees with the statements about transport in resonance

zones, see Section 2.6.2. In these terms the situation can be viewed as the following.

The many resonance zones overlap such that the chaotic orbits can propagate fast per-

pendicular to the resonances and slowly via Arnold di�usion along them. However, the

trapping processes suggested in Section 2.6.2 are based on irrational tori surrounding

the resonance zones and intersections of resonances. But the sticky region seen in Fig-

ure 5.8 is only con�ned in one direction by regular tori and is still present relatively

far away from these tori. Likewise, the sticky region contains only a few intersections

of resonances. Therefore, it is unlikely that the conjectured trapping mechanisms can

explain the observed sticky region.

As observed in the phase-space section, see Section 5.2.1, the regular tori and trapped

orbits occupy di�erent regions in frequency space, although the trapped orbits get very

close to the regular tori. The few regular points that violate this statement turn out

to be rather chaotic, when viewed in phase space. Some of the trapped orbits that get

very close to the tori appear to be trapped for very large times in very con�ned regions.

The regions are of the size △𝜔1, 2/2π ∼ 10−5 . . . 10−7 and sometimes on resonance lines,

but far away from intersections of resonance lines. The orbits are trapped for times

𝑡 > 107, that is after they entered the region they do not leave before the threshold time

𝑇 = 5 · 107. This behavior reminds of trapping in 2D systems, where chaotic orbits are

trapped for long times in the vicinity of islands chains, hence possess the frequency of

the island chain. However, here this behavior is observed very rarely and might result

from generalized partial barriers, see Section 2.6.1.

5.4 Investigation of trapping in frequency space

The sticky region and the transport within it are qualitatively discussed in Section 5.3.2.

Some of the properties of the sticky region are examined closer in this section. Therefore,

Gaussian ensembles of initial conditions are started within the sticky region and di�erent

statistics for the resulting orbits are considered. The setup of the Gaussian ensembles

is explained in Section 5.4.1. Then, in Section 5.4.2 the survival times of the orbits

are presented and in Section 5.4.3 the time dependence of variance and mean of the

Gaussian ensembles. Motivated by these statistics the general di�usion character within

the sticky region is evaluated in Section 5.4.4.

At present not all aspects of the statistics can be put in context with an underlying

trapping mechanisms. Rather the results are presented such that they can form the

basis of future studies of trapping in 4D systems. Also some properties of the sticky
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region remain to be examined such as the exit and entry to the sticky region.

5.4.1 Gaussian ensembles in sticky region

In order to obtain evidence for the observations made in Section 5.2.2 and Section 5.3

statistical investigations are conducted, that is the propagation of sets of initial points

within the sticky region is measured. These initial points are de�ned in this section.

Firstly, two points in the frequency space are chosen, both within the sticky region

at roughly the same position along the regular tori, but one frequency 𝜔in close to

the regular tori and one 𝜔out further away. Secondly, two points in phase space 𝑥in,

𝑥out are found, whose initial frequencies match approximately the chosen ones. This is

accomplished by a manual search in the (𝑞1, 𝑞2)-plane, for which 𝑝1 = 𝑝2 = 0 and which

intersects the horse-shoe. Thirdly, it is assumed that initial points along the vector

between 𝑥in and 𝑥out lead to frequencies along the vector between 𝜔in and 𝜔out. Based

on this, 𝑀 rectangles ◇𝑖 in the (𝑞1, 𝑞2)-plane can be de�ned by

𝑙𝑞𝑗 ≡ 𝑒𝑞𝑗 · (𝑥out − 𝑥in)/𝑀 · 0.05

𝜇𝑖, 𝑞𝑗 ≡ 𝑒𝑞𝑗 ·
(︂
𝑥in + (𝑥out − 𝑥in) ·

𝑖

𝑀

)︂
◇𝑖 ≡ {𝑥 ∈ 𝑈 : 𝑒𝑝𝑗 · 𝑥 = 0, 𝑒𝑞𝑗 · 𝑥 ∈ [𝜇𝑖, 𝑞𝑗 − 0.5 · 𝑙𝑞𝑗 , 𝜇𝑖, 𝑞𝑗 + 0.5 · 𝑙𝑞𝑗 ]}

with 𝑗 ∈ {1, 2} and 𝑖 ∈ N, 𝑖 ∈ [0, 𝑀 − 1]. Initial points are de�ned within these

rectangles in phase space. For the following results the initial points are chosen in form

of a 2D Gaussian distribution, with mean 𝜇𝑖, 𝑞𝑗 and standard deviation 𝜎𝑞𝑗 such that

two standard deviations lie within the rectangle, that is 𝜎𝑞𝑗 ≡ 𝑙𝑞𝑗 · 0.25. Note that the

investigations are also conducted with initial points distributed on a grid on ◇𝑖. However,
no major di�erence to the results for the Gaussian distribution can be detected, except

for the grid being partially visible in the distribution of the initial frequencies.

The parameters are chosen

𝑥in = (0, 0, 0.5098608, 0.6085289) 𝜔in = (0.294967, 0.283408)

𝑥out = (0, 0, 0.5106008, 0.61115498) 𝜔out = (0.294922, 0.283762)

and 𝑀 = 10 ensembles with 400 initial points per ensemble except for the evaluation

of the survival times, see Section 5.4.2, where 𝑀 = 15 ensembles with 104 initial points

per ensemble, are used. Note that for this choice of 𝑥in and 𝑥out the resulting rectangles

◇𝑖 in the (𝑞1, 𝑞2)-plane have an aspect ratio of roughly 1 : 4.
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Figure 5.9: Position of Gaussian ensembles of initial points around the horse-shoe

in frequency space. The Gaussian ensembles (groups of points in the zoom box

colored accordingly to their distance to the regular tori, with red indicating the closest

ensemble and blue the most distant) are shown and for comparison the regular tori

(red) and the trapped orbits (bright colors), also shown in Figure 5.7. The zoom

box indicates the position and arrangement of the ensembles. The new coordinates

(𝑥, 𝑦) are indicated by black arrows, that is the point of origin is shifted along the

direction 𝑥 to be visible in the zoom box.
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Figure 5.10: Gaussian ensembles of initial points around the horse-shoe expressed

in new coordinates (𝑥, 𝑦) as indicated in Figure 5.9. The Gaussian ensembles (groups

of points in the zoom box colored accordingly to their distance to the regular tori,

with red indicating the closest ensemble and blue the most distant) are shown and for

comparison the trapped orbits (bright colors), also shown in Figure 5.7. (a) and (b)

represent the two considered sets of ensembles with different numbers of ensembles

𝑀 and initial points per ensemble 𝑚.

The initial points are iterated as in Section 5.3.2, that is backward and forward in

time until a point is either mapped to the initial region Γ also used for the Poincaré

recurrence statistics in Section 5.1 or the number of iterations exceeds a threshold of

5 · 107. For the evaluation of the survival times this threshold is raised to 15 · 107 and

the points are only mapped forward in time.

The chaotic orbits are then transformed to frequency space, as described in Sec-

tion 3.2.3. In order to transfer the results in terms of the local directions along and

perpendicular to the tori, used in Section 5.2.2 and Section 5.3, a di�erent set of coor-

dinates (𝑥, 𝑦) in frequency space is chosen, which represents the two directions at least

in the vicinity of the started Gaussian ensembles. The 15 : −5 : 3 resonance is used

for this purpose as the 𝑥 direction, along the tori, and its orthogonal vector is used as

the 𝑦 direction, perpendicular to the tori. As point of origin (28/95, 27/95) is chosen,

which is the intersection between the 15 : −5 : 3 and the 17 : 7 : 7 resonance. The

transformation to (𝑥, 𝑦) corresponds to a rotation and shift of the original frequency

space coordinates (𝜔1, 𝜔2), thus all scales are conserved. But for simplicity the new

coordinates are rescaled by 2π, which corresponds to a normalization of the frequencies

𝜔 to the interval [0, 1). The coordinate axes and the position of the initial ensembles

in frequency space are sketched in Figure 5.9. The distance of the Gaussian ensembles
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is indicated by a red to blue color map, where the closest ensemble is red and the most

distant blue. The initial ensembles are also depicted in the new coordinate system in

Figure 5.10(a) and Figure 5.10(b). Note that the ensembles are much more extended

along the tori in the frequency space than perpendicular to them.

Di�erent aspects of the propagation of the ensembles of this setup in frequency

space are presented in the following sections. The Gaussian ensembles depicted in

Figure 5.10(a) are used in Section 5.4.3 and Section 5.4.4, the ones depicted in Fig-

ure 5.10(b) are used in Section 5.4.2.

5.4.2 Survival time statistics

First the setup described in Section 5.4.1 is used to examine the statistics of survival

times, see Section 2.2, for the sticky region around the horse-shoe. Therefore, the initial

points of the �fteen Gaussian ensembles, visualized in frequency space in Figure 5.10(b),

are mapped forward until a point is either mapped to the region Γ also used for the

Poincaré recurrence statistics in Section 5.1 or the number of iterations exceeds a thresh-

old of 5 · 107. The time 𝑡 at which an orbit �rstly enters the region Γ represents here

the survival time in the sticky region, see Section 2.2. The resulting statistics 𝑆(𝑡) of

these survival times 𝑡 is depicted in Figure 5.11 for all the used Gaussian ensembles.

The colors indicate the distance of the initial Gaussian ensemble to the tori, as seen in

Figure 5.9.

According to Figure 5.11 the survival time statistics 𝑆(𝑡) for a certain 𝑡 are larger

the closer the corresponding Gaussian ensemble is located to the regular tori. For

each ensemble 𝑆(𝑡) exhibits a power-law behavior, 𝑆(𝑡) ∼ 𝑡−𝛾, with roughly the same

exponent 𝛾 = 1.2, starting at some time 𝑡min and being present for all considered times

𝑡 > 𝑡min. The time 𝑡min for a certain statistics 𝑆(𝑡) is larger the closer the corresponding

Gaussian ensemble is located to the regular tori. This implies that the power-law

becomes relevant at later times for points that are closer to the regular tori.

Note that the setup for the survival times 𝑆(𝑡) here di�ers from the typical setup

found in the literature. There the initial region for the statistics 𝑆(𝑡) is usually the

complement of the initial region Γ used for the Poincaré recurrences 𝑃 (𝑡). In this case,

the exponent 𝛾 for the power-law of 𝑆(𝑡) is by one smaller than the exponent for 𝑃 (𝑡) [7].

5.4.3 Variances and means

The setup described in Section 5.4.1 is used to examine the time dependencies of the

variances (𝜎2
𝑥, 𝜎

2
𝑦) and means (𝑥̄, 𝑦) of the Gaussian ensembles in frequency space with

respect to the coordinates (𝑥, 𝑦) de�ned in that section. Therefore, the variances and
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Figure 5.11: Dependence of statistics of survival times 𝑆(𝑡) on time 𝑡 for Gaussian
ensembles of initial points around the horse-shoe as described in Section 5.4.1 and

shown in Figure 5.10(b). The graphs are colored accordingly to the distance of the

corresponding ensemble to the regular tori (red - closest, blue - most distant), as

shown in Figure 5.9. For comparison the gray dashed line represents a power-law

𝑆(𝑡) ∼ 𝑡−𝛾 with 𝛾 = 1.2.

means of each ensemble are calculated for all times until the �rst point of the ensemble

escapes to Γ.

The time dependencies are shown for the variances in Figure 5.12 and for the means

in Figure 5.13. The colors indicate the distance of the initial Gaussian ensemble to the

tori, as seen in Figure 5.9. The results for the iteration backwards in time are shown

with bright colors.

In Figure 5.12 the variances in both coordinates appear to be very similar for the

backward and forward iteration. However, the variance 𝜎2
𝑥(𝑡) in the 𝑥 direction, that is

along the tori, is about hundred times larger than the variance 𝜎2
𝑦(𝑡) in the 𝑦 direction,

that is perpendicular to the tori,

𝜎𝑥(𝑡)

𝜎𝑦(𝑡)
≈ 100 ∀ 𝑡 ∈ [−5 · 107, 5 · 107] .

This means that the expansion of the Gaussian ensembles is much larger along the tori

than perpendicular to them in the frequency space. Note that according to Section 5.4.1

the original variances in the (𝑞1, 𝑞2)-plane in phase space only have a ratio of at most

1 : 4. The variances of the di�erent Gaussian ensembles for one direction are at larger
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Figure 5.12: Dependence of the variances 𝜎2
𝑖 (𝑡) on time 𝑡 of Gaussian ensembles of

initial points around the horse-shoe as described in Section 5.4.1 and shown in Fig-

ure 5.10(a). The graphs are colored accordingly to the distance of the corresponding

ensemble to the regular tori (red - closest, blue - most distant, dark - forward map-

ping 𝑡 > 0), as shown in Figure 5.9). The results for both for- and backward mapping

are inserted (bright - backward mapping 𝑡 < 0 projected to absolute value |𝑡|). The
gray dashed lines represent the power law 𝜎2

𝑖 (𝑡) ∼ 𝑡−𝛾𝑖 with (a) 𝛾𝑥 = 1.0 and (b)

𝛾𝑦 = 0.8 and are included for comparison.
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Figure 5.13: Dependence of the means (𝑥̄(𝑡), 𝑦(𝑡)) on time 𝑡 of Gaussian ensembles

of initial points around the horse-shoeas described in Section 5.4.1 and shown in Fig-

ure 5.10(a). The graphs are colored accordingly to the distance of the corresponding

ensemble to the regular tori (red - closest, blue - most distant, dark - forward map-

ping 𝑡 > 0), as shown in Figure 5.9). The results for both for- and backward mapping

are inserted (bright - backward mapping 𝑡 < 0 projected to absolute value |𝑡|).
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times roughly ordered by the distance of the ensembles to the regular tori, with closer

ensembles having smaller variances. The closest and most distant ensembles presented

here di�er in the magnitude of their variances by a factor of roughly ten for both

directions. This implies that the spreading of a Gaussian ensemble is the slower the

closer it is to the tori. Furthermore, in both directions the variances exhibit a power-law

behavior 𝜎2
𝑖 (𝑡) ∼ 𝑡−𝛾𝑖 with roughly the same exponent 𝛾𝑖 for all Gaussian ensembles.

The exponent 𝛾𝑥 is one, meaning di�usion along the tori, whereas the exponent 𝛾𝑦 is

about 0.8, meaning subdi�usion perpendicular to the tori.

In Figure 5.12 the means in both coordinates appear to be even more alike for the

backward and forward iteration, than they are for the variances. Apart from that, small

changes of the means for all Gaussian ensembles are visible in both coordinates. More

precisely there is a drift away from the tori, indicated by an increase of 𝑦 over time, and

a drift to the pointy end of the horse-shoe in frequency space, indicated by a decrease

of 𝑥̄ over time. The drift velocity d𝑥̄(𝑡) /d𝑡 of the latter is found to be on average

roughly ten times larger than the drift velocity d𝑦(𝑡) /d𝑡 of the former. The drift in

the 𝑥 direction seems to be not present for some of the outer Gaussian ensembles for

which 𝑥̄(𝑡) is rather slightly oscillating. This behavior could be related to the vicinity

of these ensembles to the resonance junction 𝜔 = (105/356, 101/356) of the resonances

17 : 7 : 7, 63 : 5 : 20 and 46 : −2 : 13, see, e.g., the �rst picture of Figure 5.16. The

in�uence of resonance junctions is discussed in Section 2.6.2. However, the relevance of

the observed drifts must not be overestimated. Due to the small number of points per

ensemble and the con�ned time considered here, the drift to smaller values of 𝑥 could

result from a temporal behavior of some particular orbits. Since the coordinates (𝑥, 𝑦)

only locally approximate the directions along and perpendicular to the regular tori in

frequency space, the slight change of 𝑦(𝑡) could also be caused by such particular orbits,

propagating fast to the left point end of the horse-shoe, rather than by a drift away

from the regular tori.

5.4.4 Details on transport in the sticky region

The results for the variance and the mean of the Gaussian ensembles presented in

Section 5.4.3 suggest two distinct types of transport within the sticky region in frequency

space. On the one hand, the Gaussian ensembles exhibit rapid di�usion along the tori

with a small drift. On the other hand, a slower subdi�usion perpendicular to the tori

is observed. This behavior is independent of the distance to the regular tori. In this

section these general statements are complemented with more detailed aspects of the

transport in the sticky region. Firstly, the distribution of the trapped orbits in the
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sticky region is evaluated. Then, the spreading of the Gaussian ensembles is observed

directly in the frequency space.

In the following the distribution 𝑝((𝑥, 𝑦), 𝑡) of a ensemble at di�erent times 𝑡 is con-

sidered. These distributions allow a more detailed investigation of the spreading process

than the time dependence of the variance, which is considered in Section 5.4.3. For in-

stance deviations from the Gaussian distribution can be detected. Unfortunately, the

400 points, which are available per ensemble here, see Section 5.4.1, are not enough to

form a reasonable distribution in frequency space. Therefore, the integrated distribu-

tions 𝑃 (𝑥) and 𝑃 (𝑦) are considered here instead, which are de�ned by

𝑃 (𝑥) ≡
𝑦2∫︁

𝑦1

d𝑦

𝑇∫︁
−𝑇

d𝑡 𝑝((𝑥, 𝑦), 𝑡)

𝑃 (𝑦) ≡
𝑥2∫︁

𝑥1

d𝑥

𝑇∫︁
−𝑇

d𝑡 𝑝((𝑥, 𝑦), 𝑡)

with 𝑇 = 5 · 107, [𝑥1, 𝑥2] = [−0.001, 0.001] and [𝑦1, 𝑦2] = [−0.001, 0]. E.g., 𝑃 (𝑦)

represents the probability that an orbit of the corresponding ensemble is at position 𝑦

perpendicular to the tori at any time 𝑡 ∈ [−5 ·107, 5 ·107]. Only points with coordinates

(𝑥, 𝑦) ∈ [𝑥1, 𝑥2] × [𝑦1, 𝑦2] are considered, because in this domain the directions 𝑥 and

𝑦 correspond to the local directions along and perpendicular to the tori. Note that the

domain restricts the sticky region only along the tori, but not perpendicular to them.

Due to the rapid spreading of the ensembles along the tori, 𝑃 (𝑥) is distributed almost

uniformly apart from small noise-like oscillations and some small peaks at resonance

lines. These peaks con�rm the accumulation of trapped orbits at resonances as discussed

Section 5.3. Hence, the focus here lies on 𝑃 (𝑦), which is shown for all the Gaussian

ensembles in Figures 5.14 and 5.15. The colors indicate the distance of the initial

Gaussian ensemble to the tori, as seen in Figure 5.9. The distributions are also ordered

by this distance, that is the �rst row of pictures in Figure 5.14 belongs to the closest

ensemble and the last row in Figure 5.15 to the most distant ensemble. Note that

smaller values of 𝑦 mean smaller distance to the tori. The initial region of a ensemble

is indicated by the gray box and the mean of 𝑃 (𝑦) by the black dotted line in the left

pictures. Consequently, for ensembles with greater distance to the tori the gray box is

located at higher 𝑦 values. The same is observed for the mean in the �gures. However,

the shifts of the mean are smaller than the shifts of the initial region. Therefore, for close

ensembles the initial region is closer to the tori than the distribution 𝑃 (𝑡) on average.

This situation is reversed for distant ensembles. The fact that both initial region and
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Figure 5.14: Distribution 𝑃 (𝑦) of points perpendicular to the tori for Gaussian

ensembles. The order top-to-bottom row corresponds to the distance small-to-big

of the Gaussian ensembles to the tori with colors according to Figure 5.9. 𝑃 (𝑦) is
normed such that the area under the graph is 1. Left column: 𝑃 (𝑦) with initial region
(gray box) and mean 𝑃 (𝑦) (black dotted line); Right column: Same 𝑃 (𝑦) on log scale

with fit 𝑃 (𝑦) ∼ exp (−(𝑦 − 𝑦)2/(2𝜎2)) (gray dotted line) and fit 𝑃 (𝑦) ∼ exp (−𝛾𝑦)
(gray dashed line). Figure continues in Figure 5.15
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Figure 5.15: Distribution 𝑃 (𝑦) of points perpendicular to the tori for Gaussian

ensembles. The order top-to-bottom row corresponds to the distance small-to-big

of the Gaussian ensembles to the tori with colors according to Figure 5.9. 𝑃 (𝑦) is
normed such that the area under the graph is 1. Left column: 𝑃 (𝑦) with initial region
(gray box) and mean 𝑃 (𝑦) (black dotted line); Right column: Same 𝑃 (𝑦) on log scale

with fit 𝑃 (𝑦) ∼ exp (−(𝑦 − 𝑦)2/(2𝜎2)) (gray dotted line) and fit 𝑃 (𝑦) ∼ exp (−𝛾𝑦)
(gray dashed line). Figure started in Figure 5.14
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mean are not at a similar position means that the spreading of the Gaussian ensembles is

anisotropic. Indeed, 𝑃 (𝑦) is extended much less towards the tori than away from them.

Moreover, 𝑃 (𝑦) looks to the left of its peak like a Gaussian distribution, but decreases

more rapidly to the right, see the right column where 𝑃 (𝑦) is shown with log scale. The

dotted and dashed lines represent �ts of a Gaussian distribution 𝑃 (𝑦) ∼ e−
(𝑦−𝑦)2

2𝜎2 and

an exponential decay 𝑃 (𝑦) ∼ e−𝛾𝑦 respectively.

The exponential decay to the right of the peak is present for all Gaussian ensembles

with 𝛾 ≈ 1.9 · 104. The exponential decay might result from the exit and entry part of

the sticky region, which is far away from the tori, as described in Section 5.3.2. Since

the sticky region ends there, this part might act as an absorbing boundary.

The Gaussian �t approximates well for the ensembles close to the tori, see Figure 5.14,

but less well for the more distant ensembles, see Figure 5.15. The variance 𝜎2 of the �tted

Gaussian distribution is increasing with increasing distance to the tori. This increase

is of the same order as the increase of the variance 𝜎2
𝑦(𝑡) of the Gaussian ensembles in

Figure 5.12(b) at large times 𝑡 ∼ 106.

Taking both �ts into account, the shape of the distribution 𝑃 (𝑦) might be the result of

a di�usion process with one absorbing boundary far away from the tori. By comparing

𝑃 (𝑦) with di�erent di�usive systems, a model describing the dynamics within the sticky

region might be found. Details of this model can be inferred from the variances 𝜎2
𝑦(𝑡)

obtained in Section 5.4.3.

The spreading of the Gaussian ensembles can also be observed directly in frequency

space by looking at the positions of the trapped orbits at di�erent times 𝑡, see Fig-

ure 5.16. Note that each plot represents a time span △𝑡 = 212, see Section 3.2.3. Each

ensemble has an individual color, i.e. starting with the closest ensemble the colors are

black, bright red, dark green, purple, bright blue, dark red, bright gray, dark blue,

dark gray, and bright green. For comparison also frequency lines are shown as obtained

in Section 5.3.2. The spreading of the ensembles is very rapid in the �rst time step

𝑇 = 0 . . . 1 compared to the following time steps. As discussed in Section 5.4.3 the

spreading along the tori is much faster than perpendicular to them and becomes faster

the further away the ensembles are from the tori. Although the spreading perpendicular

to the tori is visible at all positions along the tori, it is partially enhanced by the reso-

nances. This can be seen, e.g., at 𝑇 = 2 at the downside of the bright blue and dark red

ensemble, where small bucklings following the resonances 17 : 7 : 7 and 46 : −2 : 13 are

visible. These bucklings suggest that the points close to the resonance propagate faster

towards the tori. This can be explained by Arnold di�usion, see Section 2.6.2. Besides,

the ensembles intersect the resonance lines perpendicular. Perpendicular refers to the

fact that the ensembles look at small times like thin bands, thus can be thought of as
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Figure 5.16: Spreading of Gaussian ensembles in frequency space. All plots show

the same section of the (𝑥, 𝑦) space (see Figure 5.9). Shown are trapped orbits

(points, different color for each ensemble) at different time spans 𝑇 = 𝑡/212 (see top
left of plots) and resonances (indicated by orange lines)



5.4.4 Details on transport in the sticky region 85

lines. E.g., at 𝑇 = 2 the dark green ensemble intersects in this sense the resonances

17 : 7 : 7, 63 : 5 : 20 and 46 : −2 : 13 perpendicular. In between the intersections the

ensemble is bend such that it looks like a smooth line. This corresponds to transport

across overlapping resonance zones, see Section 2.6.2. The orbits can move rapidly per-

pendicular to the resonances and also from resonance to resonance in case the resonance

zones overlap. The resonance zones 16 : 1 : 5 and 31 : 3 : 10 are very broad, since also

ensembles far away from them bend perpendicular to them. This is visible, e.g., at

𝑇 = 9 for the bright red ensemble which bends directly at the left of the resonance

46 : −2 : 13 perpendicular to the resonance 16 : 1 : 5. Also at larger times 𝑇 ≥ 26 the

major resonances 16 : 1 : 5 and 31 : 3 : 10 to have a band-shaped region around them,

which contain less points than the regions next to them. These bands indicate probably

the width of the resonance zones of the major resonances. In contrast to the bands

surrounding them the major resonances accumulate a lot of orbits, as seen for larger

times 𝑇 ≥ 26. It is not clear at the moment if the behavior at these major resonances is

a physical phenomenon or a numerical artifact. Recall that always △𝑡 = 212 iterations

of a chaotic orbit give one frequency, see Section 3.2.3. Thus, in frequency space a point

of a chaotic orbit represents a time average of the orbit. Consequently, for chaotic orbit

oscillating very rapidly around a resonance the computed frequencies will always lie on

the resonance, because these frequencies correspond to its average behavior in phase

space.

Besides, only some dynamics seen in the sticky region in Figure 5.16 can be explained

with the transport in resonance zones, see Section 2.6.2. E.g., at 𝑇 = 9 the bright

green orbits also propagate in an area, which cannot be assigned to one of the major

resonance zones 16 : 1 : 5 or 17 : 7 : 7. As seen in Figure 5.8, there are not enough

relevant resonances to cover the whole sticky region. Nevertheless, trapped orbits are

found in almost every part of the sticky region and the spreading of the Gaussian

ensembles looks similar in regions inside and outside of resonance zones. Furthermore,

as mentioned in the discussion of Figure 5.8 the resonances in the sticky region are not

con�ned by KAM tori as it is typically the case for resonances of the Arnold web. The

remaining KAM tori are far away, thus it is not clear why these resonances in�uence

the propagation of the trapped orbits at all.





6 Summary and outlook

In this thesis the trapping of chaotic orbits in 4D symplectic maps is investigated.

The global structure of the regular tori is explained and sticky regions are found close

to the boundary of these structures. The transport properties of the sticky region are

quanti�ed in frequency space and related to known di�usion phenomena associated with

resonances. In this context, a combination of phase-space visualizations and frequency

analysis proves to be e�ective for the study of systems with two degrees of freedom.

Moreover, conceptual issues of Laskar's frequency analysis are discussed and resolved for

some cases. The results are used to apply the frequency analysis to strongly perturbed

systems.

The global structure of the regular tori is found to be based on one parameter families

of central 1D tori. Each central 1D torus is surrounded by layers of 2D tori. An

algorithm is devised which approximates for any 2D torus the corresponding central 1D

torus. The resulting families of 1D tori turn out to be either the remains of resonant

tori or center manifolds. These center manifolds exist beyond major resonance gaps.

While the usual algebraic approximations of center manifolds fail at these resonance

gaps, the developed algorithm represents a more e�ective method to numerically obtain

center manifolds of a system.

Chaotic orbits are observed to be trapped close to the boundary of the regular struc-

tures. By a systematic search for trapped orbits a thin layer around the regular struc-

tures is identi�ed as a sticky region. The transport within the sticky region is analyzed

by examining the spreading of Gaussian ensembles in frequency space. The transport

is classi�ed into two directions. The transport along the regular tori is di�usive and

the transport perpendicular to them is subdi�usive. An ensemble of resonance zones

in�uences the dynamics via Arnold di�usion and resonance overlap. These observations

in phase space and in frequency space suggest that the trapping is not caused by a

hierarchical structure as in 2D. Instead, a possible interpretation is that the ensemble

of resonance zones combines into a large sticky region.

Future studies in higher dimensional systems should determine the relevance of the

resonance zones for the trapping. The role of Arnold di�usion is still unclear for strongly

perturbed systems as there the resonance zones are not enclosed by regular tori. Con-



88 5.4 Investigation of trapping in frequency space

sequently, the mechanism by which these resonance zones in�uence the dynamics has

to be understood. Finally, the entry and exit to the sticky region has to be investigated

in order to completely reveal the trapping mechanism in higher dimensional systems.

Future investigations can use the promising approach of ensembles of trapped orbits in

frequency space to answer these questions.



A Appendix

A.1 Analysis of fractal dimensions

In Section 5.2.2 the dimension of the trapped orbits is qualitatively observed to be about

three, which is less than the dimension of the 4D phase space. This speculation has

to be quanti�ed. For this purpose the box-counting dimension 𝐷Box of the computed

trapped orbits is determined [19].

The following procedure is conducted for every trapped orbit. A natural number

𝑀 ∈ N is chosen, which de�nes

𝜖 ≡ 1

𝑀

with 0 < 𝜖 ≤ 1. Then each coordinate 𝑝1, 𝑝2, 𝑞1, and 𝑞𝑤 is uniformly decomposed into

𝑀 intervals of length 𝜖 such that the 4D phase space, which is here [0, 1)4, is uniformly

decomposed into 𝑀4 4D cubes, denoted as boxes. For each 𝜖 the number of boxes 𝑁(𝜖),

that contain a point of the trapped orbit, is counted. Examples for the shape of 𝑁(𝜖)

are portrayed in Figure A.1. With decreasing 𝜖 the number of boxes 𝑁(𝜖) increases

exhibiting a power-law behavior,

𝑁(𝜖) ∼
(︂

1

𝜖

)︂𝐷Box

, (A.1)

for some part of the domain. For even smaller 𝜖 it turns into a asymptotic curve,

approaching the number of points belonging to the trapped orbit. The box-counting

dimension 𝐷Box is de�ned as the exponent of the power-law Eq. (A.1) within the corre-

sponding interval of 1/𝜖. For objects of dimension 𝐷 ∈ N the box-counting dimension

𝐷Box matches this dimension, 𝐷Box = 𝐷.

As only the trapping process is of interest, the analysis is restricted to the middle third

of each orbit such that the entry and exit segments are ignored. After experimenting

with some orbits, the calculation is automated with the following parameters, denoting

the length of the orbit by 𝑇 and the shortest used interval length by 𝜖Min :
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30 values for 1/𝜖 are used, which are uniformly distributed on a logarithmic scale with

1/𝜖 ∈ [3, 4
√︀
𝑇/3 · 103] .

In order to ensure that the domain of 1/𝜖 contains the power-law all orbits for which

𝑁(𝜖Min) − 𝑇/3

𝑇/3
> 0.1% , (A.2)

are sorted out. The condition of Eq. (A.2) is based on the fact, that for a su�cient big

1/𝜖Min the number of boxes 𝑁(𝜖Min) approximates the length of the orbit. The interval

of 1/𝜖, in which the power-law is �tted, is such that the corresponding 𝑁(𝜖)

𝑁(𝜖) ∈ [100, 𝑁(𝜖Min)/10] .

In order to ensure that this �t interval leads to reasonable results all orbits are sorted

out for which the interval covers less than two magnitudes of 1/𝜖 or contains less than

ten calculated points 𝑁(𝜖). Furthermore, all orbits are sorted out for which the points

𝑁(𝜖) in the �t interval deviate to much from a power-law. This deviation is evaluated

by comparing the linear �t 𝑓(log 1/𝜖) and the points log𝑁(𝜖), i.e., all points are sorted

out for which⎯⎸⎸⎷1/𝐿 ·
𝐿∑︁
𝑖=1

(︂
𝑓

(︂
log

1

𝜖𝑖

)︂
− log𝑁 (𝜖𝑖)

)︂2

> 0.06 ,

where 𝐿 is the number of �tted points.

The procedure is applied to the trapped orbits of the 2D standard map in the same

manner, except for the interval of 1/𝜖, which is in this case

1/𝜖 ∈ [3,
√︀
𝑇/3 · 104] ,

in order to use Eq. (A.2) accordingly.

Examples for the results of the automated process are depicted in Figure A.1. The

resulting 𝑁(𝜖) are depicted as blue points and the automated �t is shown as gray line on

the �tting interval. Most results look like Figures A.1(a) and A.1(b). In most of the 4D

cases the automated �t works well, as seen in Figure A.1(a), whereas in some cases the

�t is slightly o�, as seen in Figure A.1(b). In the 2D cases 𝑁(𝜖) sometimes exhibits the

power-law behavior on a small interval, as well as several di�erent power laws, as seen

in Figure A.1(c). Thus, the numerical setup as described allows only a rough estimate
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Figure A.1: Examples for automated box-counting dimension 𝐷Box evaluation for

(a, b) the 4D map 𝐹SC and (c) the 2D map 𝐹2D. The obtained 𝑁(𝜖) (blue crosses)
and the fitted power-law (gray line) within the used fit interval are shown. (a) shows

an example of an optimal fit, (b) shows an example of a fit, whose fit interval starts

and ends at to small values of 1/𝜖, and (c) shows an example of calculated points,

which exhibit two different power laws at different scale, thus not allow a correct fit.
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of the box-counting dimension 𝐷Box. Nevertheless, in all spot tests the deviation from a

𝐷Box, whose �t interval is chosen by hand, is smaller than 0.05. Therefore, the statistics

of the box-counting dimensions 𝐷Box of the trapped orbits only deal with dimensions

rounded to a tenth. However, this accuracy is su�cient for the purpose of determining,

whether the orbits are on average trapped in a four, three or less dimensional region.

The statistics of the trapped orbits of 𝐹SC and 𝐹2D considered in Section 5.2 are

presented in Figure A.2. The statistics for 𝐷Box for the 4D map 𝐹SC in Figure A.2(a)

approximates a Gaussian distribution with a peak around 𝐷Box = 2.3. The calculated

dimensions range from 1.6 to 2.6. This suggests that the dimension of the trapped orbits

tends to be less than four or even less than three in some cases. On the contrary the

statistics in the 2D map 𝐹2D in Figure A.2(b) has a sharp peak around 𝐷Box = 1.2 with

dimensions ranging from 0.9 to 1.3. This is also much less than the expected dimension

two, which is the dimension of the available phase space. Moreover the ranges and the

mean are about half of the values for the 4D case. In both cases the region, the orbits

are trapped in, seem to have a fractal dimension much smaller than the dimension of

the phase space. It should be pointed out, that the application of the box-counting

method here has numerical limitations due to the limited number of available points

within the trapped region. These limitations have not been taken into account. For

example many of the orbits with 𝐷Box ≤ 2 that are examined more closely, turn out

to be trapped in a region consisting of several very small disjoint subregions, which

look rather like 2D objects in the phase-space section. In these cases the presented

box-counting algorithm mainly resolves the dimension resulting from several point-like

subregions ignoring the dimension of these subregions. This is because the power-law

resulting from the dimension of the subregions is only visible at much larger values of

1/𝜖. The number of points in these subregions is insu�cient to resolve 𝑁(𝜖). Besides

in some cases, primarily for the 2D map 𝐹2D, more than one power-law behavior each

with a di�erent exponent 𝐷Box is found, see, e.g., Figure A.1(c).

To summarize, the analysis of the fractal dimension of trapped orbits in the 4D map

𝐹SC shows that the trapped orbits are heavily con�ned at least in one dimension. This

statement is supported by the results presented in Sections 5.3 and 5.4.
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(a) 4D map, 𝐹SC: 𝐷Box for 813 trapped orbits
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(b) 2D map 𝐹2D: 𝐷Box for 431 trapped orbits

Figure A.2: Statistics 𝑃 (𝐷Box) of the box-counting dimension 𝐷Box of the middle

third of trapped orbits. The evaluated𝐷Box is rounded to a tenth, 𝑃 (𝐷Box) is normed

such that the area under the graph is 1.
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A.2 Results for weakly coupled standard map 𝐹WC

In this section the results for the weakly coupled standard map 𝐹WC are brie�y pre-

sented. The results are obtained accordingly to the results of the strongly coupled

standard map 𝐹SC presented in the previous chapters. For further details and discus-

sion it is referred to the corresponding sections in these chapters.

In Figure A.3 the Poincaré recurrence statistics 𝑃 (𝑡) for 𝐹WC are shown according to

Section 5.1.

In Figure A.4 a gallery of trapped orbits for 𝐹WC is shown according to Section 5.2.1.

In Figure A.5 the central 1D tori for 𝐹WC are shown according to Section 4.3. Much

more invariant manifolds are visible than for 𝐹SC. Also one of the center manifolds of the

central elliptic�elliptic �xed point is located almost completely within the (𝑝1, 𝑞1)-plane,

which is indicated by the 2D area of black intersection points in Figure A.5(a). This is

due to the small perturbation of the system. The manifolds of the period 4 island chain

are missing accordingly to the discussion of disjoint islands in Section 4.2.3.

In Figure A.6 the statistics of the box-counting dimension 𝐷Box of trapped orbits for

𝐹WC are shown according to appendix A.1. The peak at 𝐷Box = 2.7 is absent for 𝐹SC.

All orbits belonging to this peak that are visualized in phase space turn out to be of

the type shown in Figure A.4(a).
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Figure A.3: Dependence of statistics of Poincaré recurrences 𝑃 (𝑡) on time 𝑡 for

the 4D map 𝐹WC, see Eq. (2.13). For comparison the gray dashed line represents a

power-law 𝑃 (𝑡) ∼ 𝑡−𝛾 , with 𝛾 = 1.6. The exponent obtained by fitting is 𝛾fit = 1.57.
The inset sketches the position of the initial region Γ (blue box) in form of a phase

space section |𝑝2| < 10−5, see Section 3.1, with regular tori (red) and a trapped orbit

(blue).
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Figure A.4: Examples for trapped orbits of the 4D map 𝐹WC, see Eq. (2.13). Shown

is the section |𝑝2| < 𝜖, with regular tori (red, 𝜖 = 10−5) and example of a trapped

orbit (blue, 𝜖 = 10−4). The captions contain the time 𝑇 till the first return
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Figure A.5: Central 1D tori of 𝐹WC in the phase-space section |𝑝2| < 𝜖 (see Sec-

tion 3.1.3) and projected to the (𝑝1, 𝑞1, 𝑞2)-space (see Section 3.1.2). (a) The phase-

space section shows the central 1D tori (black points) and regular tori (red). (b) For

comparison in the projection the intersection points (black) of the central 1D tori

with the phase-space section are depicted.
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Figure A.6: Statistics 𝑃 (𝐷Box) of the box-counting dimension 𝐷Box of the middle

third of 1585 trapped orbitsof the 4D map 𝐹2D. The evaluated 𝐷Box is rounded to a

tenth, 𝑃 (𝐷Box) is normed such that the area under the graph is 1.
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